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Machine Learning x

(named by Arthur Samuel, 1959)

Grtificial Neuron Network \

(ANN, 1943)
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Deep ANN

=

Modern deep ANN learning systems
developed in last decade is extending
its great success in image and speech
recognition, self-driving car, etc, to
scientific research. This may bring far-
reaching influence for collider physics.

Unlike cut-based method and traditional ML techniques (e.g. BDT) which rely heavily
on expert-designed observables to reduce problem dimensionality, deep ANN
automatically extracts pertinent features as neurons from data.

Collider physics in near future: kinematic observable design => algorithm design =>

high-efficient data mining
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“ © Detection target is unknown

. . Detection target is not necessary to be unique

Rev © No a priori knowledge about targets is needed during the training phase.

=> The detection is "‘target” or "'model”’-independent fark
Mz : : - )
- If treating the BSM physics as " novel” event, we can search for BSM
ns
1 physics model-independently, using the novelty detection techniques -
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Supervised Classification
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F(f(c1 @ cz)) F(f(d )
Novelty Eva,luator

Pn(dz'\cz)

Workflow

Step 1: (SM) feature
learning

Step 2: dimension
reducing of feature
space (auto-encoder)

Step 3: novelty
evaluating of testing
data

=> Detection
sensitivity based on
novelty response




The developing history of novelty detection is basically a history
of developing novelty evaluators or evaluation approaches
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The developing history of novelty detection is basically a history
of developing novelty evaluators or evaluation approaches
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u j} ~ Novelty Evaluators: Traditional Wisdom

/
A L dtraln < train> O — 1 1 £ cA
<dtrain>
Novelty measure: range unnormalized Novelty evaluator: 0 < O <1

dtrain : mean distance of a testing data point to its k nearest neighbors
< :;rain> . average of the mean distances defined for its k nearest neighbors
(dtram> /2 : standard deviation of the latter
All quantities are defined wrt the training dataset

[H. Kriegel, P. Kroger, E. Schubert, and A. Zimek, 2009]
[R. Socher, M. Ganjoo, C. D. Manning, and A. Ng , 2013]




u JJ Novelty Eva rltlonal WlSdOm

- |
<d/2 . >1/2 _5 \/i

train

Large distance => high score

e Short distance => low score
* => a measure of isolation
* This design ignores the
correlation among the testing
* data with unknown pattern, and

may not work well for data
analysis in particle physics
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dtraln < oo > 1 cA

Atrad — ltra,ln O=—-—|1+erf| —
/2 2

<d’/c%ain> \/§

Resonance, shape, ... could be
important clustering features for

BSM physics detection

The testing data of unknown
pattern with such features are
scored low, unless they are away
from the training data!

Why such a design? Application
driven, e.g., finger print recognition
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A _ dtrain o < train> A ___ test train
trad — new — —
2 1/2 d m/2
< train> train

dtrain: mean distance of a testing data point to its k nearest neighbors in the
training dataset

dtest : mean distance of a testing data point to its k nearest neighbors in the
testing dataset

m: dimension of the feature space

Novelty is evaluated by comparing local densities of the testing point in the
training and testing datasets q

Approximately statistical interpretation : Anew X ——

VB

local bin




/
tra1n> Anew —

(diZain)

train

VS

Training dataset

-m _ J—m
test train

do

train

Big density
difference =>
high score

Small density
difference =>
low score

=> a measure
of clustering

'
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u JJ Novelty Evaluators: Performance Comparison
47 47
. . Consider 2D Gaussian samples
U % U Training dataset: known pattern
; - 10! e . 10' Only
| Testing dataset: known +
4+ v - > e (1 4+ - : x i (1
£ = s = ° ° unknown patterns
Training data. b) Testing data.
(a) Training data (b) Testing data Compared to O trad, the
known 2000, | known novelty response of unknown-
6001 unknown unknown
| | 500 pattern data is much stronger
£ 400 ¥ £ \
: j_J ", % 1000 | for O_new
2001 Iy » | .
_ S 01 ] => A well-separation between
of ! | of & T the known- and unknown-
0.00 0.25 ?)50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
trad

()m'\\'

pattern data distributions
(¢) Oraa performance.

(d) Onew performance.
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0.4 ;-—known -
—m . _m 0.3 | =—unknown
A — test train N Novelty response
new - d_ m/2 0.2}

train 01} _:
o.ol——ij: : - -

Without a priori 00 02 04 06 08 ,10

knowledge on the BSM | Onew
physics, novelty detection 1'0\

generically suffers from " \ > | 2% e coored tiams
“Look Elsewhere Effect 06 \

(LEE)”, given the size of 04

the parameter space to 02

be searched. 123/\4 :
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The influence of fluctuations for detection sensitivity can be
compensated for as the luminosity L increases, if k scales with L.

This can be understood since more and more data are used to
calculate dtest in the local bin which is barely changed.
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‘l'lvjj “Look Elsewhere Effect’ - Central Limit Theorem

Central Limit Theorem

The standard deviation of the Delta_new response scales with 1/
sgrt{k} or 1/sqrt{L}, for the testing data with known patterns only.
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u JJ “"Look Elsewhere Effect’ - Central Limit Theorem
Central Limit Theorem

The standard deviation of the Delta_new response scales with 1/
sgrt{k} or 1/sqrt{L}, for the testing data with known patterns only.
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lT'D “"Look Elsewhere Effect’’ - Central Limit Theorem

Central Limit Theorem

The standard deviation of the Delta_new response scales with 1/
sgrt{k} or 1/sqrt{L}, for the testing data with known patterns only.

vvvvvvvvvvvvvvvvvvvvv

0.4 | —eknoOWN =
0.3 :—unknown
0.2 Novelty response

Ao => The distribution of the data with known
e patterns will get narrowed, as L increaseg!
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Given the fixed number of background and signal events, which
cases have a worse LEE among A, B, C?
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Given the fixed number of background and signal events, which
cases have a worse LEE among A, B, C?

10,
0.8 \
s 1\ B
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To compensate for high-scoring of known- _
pattern data from high-density region == Ocomb — \/Otrad Onew
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Many high-scoring data of
known pattern in Fig. a are
pushed to the low-scoring end
In Fig. c, due to the
compensation of O trad as
indicated in Fig. b.

=> ~ 50% improvement in
detection sensitivity!
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Analysis one: di-top (leptonic) production at LHC (the SM cross
sections have been scaled by a factor 1/2000, for simplification)

e pp—titi,  o=115f, X1t pp — TT — WP W, bb

e pp— LW, 5 =0.3651b

e 0> 27, o=00765fb. X2ipp—Z —tt

Analysis two: exotic Higgs decays at e+e- collider

e ¢ete™ > hZ — Z*

1mnv

LI 0= 0.00686tb , Yi: h = X1X2 — X1X10.

e ete” S hZ = Z7 Zin ITl- 0= 0.00259fb . Ya2: h = Za

Parameter values o(fb)
X1 mr = m= 1.2TeV, BR(T — W,"b) = 50% 0.152
X2 my = 3TeV, gz = gz, BR(Z' — tt) = 16.7% 1.55
Y1|my, = 22 = ™a = 10GeV, BR(h — bbEF™) =1%]0.108
Y2 ma = 25 GeV, BR(h = bbEF™®) = 1% 0.053
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C7 Parton-level Benchmark Study
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(c) Benchmark: Y1 (d) Benchmark: Y2
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|

X1: well-modeled by the
Gaussian sample!

X2: O_comb less efficient due
to one-order larger S/B

X3 and X4: O_new performs
universally better than the
others, due to large S/B

The sensitivities based on the
algorithm designed are not far
below the ones based on
supervised learning
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Wishlist of Questions to Address

Optimize the algorithm (e.qg., if it is possible to reduce sensitivity
discrepancy between novelty detection and supervised learning by
utilize some dynamical learning mechanism)

Test the algorithm at more realistic level (hadron level)

What is its sensitivity performance if we treat some SM processes
to measure as " 'BSM” scenarios? (Question raised by Junjie Zhu)

Is it possible to invent a novelty evaluator to exploit multiple
measures at once? (Question raised by Aurelio Juste)




Comparlson wnth Recent Efforts

1806.02350 (D’Agnolo and Wulzer) and 1807.06038 (Simone and Jacques)

Similar motivations are shared by all of the three efforts.

Algorithms: "“differential” approach (1807.10261) vs. "“integral” method
(1806.02350, 1807.06038)

o~ N(W)

t(D) = 2 log —N(R) H
:I:ED

[1806.02350]

1 &, pr(z;)
— oo M7 — T\%g
TS(7) = log A =~ E_ log = .
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signal with peak-dip-like structure

0.4
0.2
2 34 5
. oy - A famous example: (pseudo-)scalar di-top resonance
400 my = 170 GeV
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0 40 S0 60 750 80 [Dicus, Stange & Willenbrock 1994]




Comparlson wnth Recent Efforts

1806.02350 (D’Agnolo and Wulzer) and 1807.06038 (Simone and Jacques)

Similar motivations are shared by all of the three efforts.

Algorithms: "“differential” approach (1807.10261) vs. "“integral” method
(1806.02350, 1807.06038)

1.0,

—N(w) SB'W
t(D) =2 log —N(R) H $|R) 0.8

06

No principle difficulty in
probing for signal with
peak-dip-like structure

[1806.02350]
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1806.02350 (D’Agnolo and Wulzer) and 1807.06038 (Simone and Jacques)

Similar motivations are shared by all of the three efforts.

Algorithms: "“differential” approach (1807.10261) vs. "“integral” method
(1806.02350, 1807.06038)

A performance comparison among different algorithms is
informative and necessary, and might be pursued in the near future
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Summary

The rapid development of the DNN techniques may bring far-reaching
influence for collider physics / particle physics

We explore the potential role of novelty detection in particle physics

Complementary to supervised learning, novelty detection allows data
to be analyzed model-independently. => A combination of them may

lay out a framework for the future data analysis in particle physics

By properly designing novelty evaluators, encouragingly high sensitivity
can be achieved for detecting the BSM physics (at least for

benchmarks considered here)

Following-up project is on-going, in collaboration with experimental

colleagues







