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Deep ANN and Collider Physics   

Machine Learning  
(named by Arthur Samuel, 1959)

Artificial Neuron Network 
(ANN, 1943)

Deep ANN

Modern deep ANN learning systems 
developed in last decade is extending  
its great success in image and speech 
recognition, self-driving car, etc, to 
scientific research. This may bring far-
reaching influence for collider physics.

Unlike cut-based method and traditional ML techniques (e.g. BDT) which rely heavily 
on expert-designed observables to reduce problem dimensionality, deep ANN 
automatically extracts pertinent features as neurons from data.  

Collider physics in near future: kinematic observable design => algorithm design => 
high-efficient data mining



Novelty Detection
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Novelty Detection
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Detection target is unknown  

Detection target is not necessary to be unique 

No a priori knowledge about targets is needed during the training phase. 

=> The detection is ``target’’ or ``model’’-independent 

If treating the BSM physics as ``novel’’ event, we can search for BSM 
physics model-independently, using the novelty detection techniques 



Workflow 
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Step 1: (SM) feature 
learning   

Step 2: dimension 
reducing of feature 
space (auto-encoder) 

Step 3: novelty 
evaluating of testing 
data  

=> Detection 
sensitivity based on 
novelty response



Novelty Evaluators - Application Driven

6

The developing history of novelty detection is basically a history 
of developing novelty evaluators or evaluation approaches  



Novelty Evaluators - Application Driven
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The developing history of novelty detection is basically a history 
of developing novelty evaluators or evaluation approaches  



Novelty Evaluators: Traditional Wisdom
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                 : mean distance of a testing data point to its k nearest neighbors    

                 : average of the mean distances defined for its k nearest neighbors  

                     : standard deviation of the latter  

All quantities are defined wrt the training dataset

Novelty measure: range unnormalized Novelty evaluator: 0  O  1

[H. Kriegel, P. Kroger, E. Schubert, and A. Zimek, 2009]
[R. Socher, M. Ganjoo, C. D. Manning, and A. Ng , 2013] 



Novelty Evaluators: Traditional Wisdom
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Large distance => high score 

Short distance => low score 

=> a measure of isolation 

This design ignores the 
correlation among the testing 
data with unknown pattern, and 
may not work well for data 
analysis in particle physics



Novelty Evaluators: Traditional Wisdom
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Resonance, shape, … could be 
important clustering features for 
BSM physics detection 

The testing data of unknown 
pattern with such features are 
scored low, unless they are away 
from the training data!  

Why such a design? Application 
driven, e.g., finger print recognition
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Novelty Evaluators: New Input

             : mean distance of a testing data point to its k nearest neighbors in the 
training dataset   

             : mean distance of a testing data point to its k nearest neighbors in the 
testing dataset  

m: dimension of the feature space 

Novelty is evaluated by comparing local densities of the testing point in the 
training and testing datasets 

Approximately statistical interpretation :  

dtest

�
new

/ Sp
B

���
local bin
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Novelty Evaluators: New Input

Training dataset Testing dataset

Big density 
difference => 
high score 

Small density 
difference => 
low score 

=> a measure 
of clustering 

VS
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Novelty Evaluators: Performance Comparison 

Consider 2D Gaussian samples 

Training dataset: known pattern 
only  

Testing dataset: known + 
unknown patterns 

Compared to O_trad, the 
novelty response of unknown-
pattern data is much stronger 
for O_new  

=> A well-separation between 
the known- and unknown-
pattern data distributions
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``Look Elsewhere Effect’’

Without a priori 
knowledge on the BSM 

physics, novelty detection 
generically suffers from 
``Look Elsewhere Effect 
(LEE)’’, given the size of 
the parameter space to 

be searched. 
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Data in both regions can 
be scored high!

Novelty response
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``Look Elsewhere Effect’’ - Central Limit Theorem

The influence of fluctuations for detection sensitivity can be 
compensated for as the luminosity L increases, if k scales with L. 

L

V.S.

2 * L

This can be understood since more and more data are used to 
calculate dtest in the local bin which is barely changed. 
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``Look Elsewhere Effect’’ - Central Limit Theorem

L

V.S.

2 * L
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Central Limit Theorem 
The standard deviation of the Delta_new response scales with 1/
sqrt{k} or 1/sqrt{L}, for the testing data with known patterns only.



``Look Elsewhere Effect’’ - Central Limit Theorem

Central Limit Theorem 
The standard deviation of the Delta_new response scales with 1/
sqrt{k} or 1/sqrt{L}, for the testing data with known patterns only.
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``Look Elsewhere Effect’’ - Central Limit Theorem

Central Limit Theorem 
The standard deviation of the Delta_new response scales with 1/
sqrt{k} or 1/sqrt{L}, for the testing data with known patterns only.

=> The distribution of the data with known 
patterns will get narrowed, as L increases!
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Novelty response
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Strategy to Address Large LEE
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Given the fixed number of background and signal events, which 
cases have a worse LEE among A, B, C?
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Strategy to Address Large LEE

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Given the fixed number of background and signal events, which 
cases have a worse LEE among A, B, C?

A
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Fluctuations

=>To compensate for high-scoring of known-
pattern data from high-density region
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Strategy to Address Large LEE

Center slightly shifted, with S/B = 1/20
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Strategy to Address Large LEE

Many high-scoring data of 
known pattern in Fig. a are 
pushed to the low-scoring end 
in Fig. c, due to the 
compensation of O_trad as 
indicated in Fig. b.  

=> ~ 50% improvement in 
detection sensitivity!
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Parton-level Benchmark Study 

Apply the algorithms to two parton-level analyses, with two BSM 

Analysis one: di-top (leptonic) production at LHC (the SM cross 
sections have been scaled by a factor 1/2000, for simplification) 

Analysis two: exotic Higgs decays at e+e- collider  
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Parton-level Benchmark Study

X1: well-modeled by the 
Gaussian sample!  

X2: O_comb less efficient due 
to one-order larger S/B 

X3 and X4: O_new performs 
universally better than the 
others, due to large S/B 

The sensitivities based on the 
algorithm designed are not far 
below the ones based on 
supervised learning                  
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 Wishlist of  Questions to Address

Optimize the algorithm (e.g., if it is possible to reduce sensitivity 
discrepancy between novelty detection and supervised learning by 
utilize some dynamical learning mechanism)  

Test the algorithm at more realistic level (hadron level) 

What is its sensitivity performance if we treat some SM processes  
to measure as ``BSM’’ scenarios? (Question raised by Junjie Zhu)  

Is it possible to invent a novelty evaluator to exploit multiple 
measures at once? (Question raised by Aurelio Juste) 

… … … …                 



Comparison with Recent Efforts
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1806.02350 (D’Agnolo and Wulzer) and 1807.06038 (Simone and Jacques) 

Similar motivations are shared by all of the three efforts.  

Algorithms: ``differential’’ approach (1807.10261) vs. ``integral’’ method 
(1806.02350, 1807.06038)             

[1806.02350]

[1807.06038]
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[Dicus, Stange & Willenbrock 1994]

A famous example: (pseudo-)scalar di-top resonance
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signal with peak-dip-like structure

Comparison with Recent Efforts



Comparison with Recent Efforts
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1806.02350 (D’Agnolo and Wulzer) and 1807.06038 (Simone and Jacques) 

Similar motivations are shared by all of the three efforts.  

Algorithms: ``differential’’ approach (1807.10261) vs. ``integral’’ method 
(1806.02350, 1807.06038)             

[1806.02350]

[1807.06038]
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No principle difficulty in 
probing for signal with 
peak-dip-like structure



Comparison with Recent Efforts
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A performance comparison among different algorithms is 
informative and necessary, and might be pursued in the near future

1806.02350 (D’Agnolo and Wulzer) and 1807.06038 (Simone and Jacques) 

Similar motivations are shared by all of the three efforts.  

Algorithms: ``differential’’ approach (1807.10261) vs. ``integral’’ method 
(1806.02350, 1807.06038)             
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 Summary

The rapid development of the DNN techniques may bring far-reaching 
influence for collider physics / particle physics 

We explore the potential role of novelty detection in particle physics 

Complementary to supervised learning, novelty detection allows data 

to be analyzed model-independently. => A combination of them may 

lay out a framework for the future data analysis in particle physics 

By properly designing novelty evaluators, encouragingly high sensitivity 

can be achieved for detecting the BSM physics (at least for 

benchmarks considered here)    

Following-up project is on-going, in collaboration with experimental 

colleagues                          



LHC

  At tree level, we have 

Here                                            can be understood as a measure of the de 

   

At loop-level, we have  
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Thank you!


