

Latest Results from CMS Experiment

Mingshui Chen

中国科学院高能物理研究所

手征有效场论研讨会 2018.08.29 长春

Outline

- LHC and CMS status
- Recent Physics Results^(*)
 - Higgs
 - SM Physics
 - Direct searches for BSM
- Outlook and Summary

(*)因时间有限, 仅侧重于个人偏好的最新物理结果

CMS 所有物理结果请参考 <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u>

Large Hadron Collider (LHC) at CERN

The Higgs boson, found in 2012, "completes" the Standard Model of particle physics.

But ...

- The SM model still does not explain many of the phenomena of our physical universe
 - neutrino masses, baryon asymmetry of the universe, dark matter
- Need "Beyond the Standard Model (BSM)": many ideas, theories and models
 - A broad investigation on many fronts is necessary
- At LHC, we are
 - Studying the properties of the the Higgs that, through its coupling directly to MASS, can make contact with hidden sectors that are invisible to us otherwise
 - Looking for deviations from the precise predictions of the SM
 - Searching directly for new particles and new forces

→All three strategies require more statistics

Run Status

CMS Integrated Luminosity, pp

Results shown here mostly based on 2016 w/wo 2017 data

Challenge to the experiments

CMS Average Pileup, pp, 2018, $\sqrt{s} = 13$ TeV

Peak Lumi. \sim 2x10³⁴cm⁻²s⁻¹

CMS Evolution in 2017/18

CMS Design

- Very large solenoid 6m diameter x 13 m long
 - Tracking and calorimetry fit inside
- Very strong field 3.8T
 - Excellent momentum resolution
- Chambers in the return iron track and identify muons, leading to a very compact system
- A lead tungstate crystal calorimeter (~76K crystals) for photon and electron reconstruction
- Hadron calorimeters for jet and missing E_t reconstruction to η~5
- Charged Particle Tracking with allsilicon components
 - A silicon pixel detector out to radius ~ 20 cm
 - A silicon microstrip detector from there out to 1.1 m
- Weight, dominated by steel, is 14,000 Tons

CMS is continuously upgraded to handle higher luminosity and do better physics

Preliminary

1800

1800

Data

γ*/Z → μ⁺μ⁻

105

Detector performance

9

- LHC and ATLAS/CMS status
- Physics Results
 - Higgs
 - SM Physics
 - Direct searches for BSM
- Outlook and Summary

Over the last few years, CMS has worked hard to establish the Yukawa couplings to the heaviest fermions, τ , b, top

→ The Higgs Yukawa interaction is a highly motivated conjecture to give mass to the fermions

Observation of $H \rightarrow \tau^+ \tau^-$

- BR~ 6.3%, best channel to establish coupling of Higgs boson to fermions
- Final states: $\tau_h \tau_h$; $e\tau_h$; $\mu \tau_h$; $e\mu \rightarrow$ Significance of 4.9 σ observed (4.7 σ expected) with 2016 13 TeV data
- Combination with 7, 8 TeV data: 5.9σ obs. (5.9σ exp.) and μ = 0.98 ± 0.18

ttH coupling (two years ago)

- Indirectly established at Run 1 through the ggH loop process, but model dependent
- The direct ttH coupling was evident, but somewhat higher than expectation

Now we have the ttH observation

- First 5σ observation of ttH
- Very sophisticated analyses, pushing detector performance very far, many channels, MVAs...

Now we have the ttH observation

- First 5σ observation of ttH
- Very sophisticated analyses, pushing detector performance very far, many channels, MVAs...

 $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16} (\text{stat.}) \,{}^{+0.17}_{-0.15} (\text{exp.}) \,{}^{+0.14}_{-0.13} (\text{bkg.th.}) \,{}^{+0.15}_{-0.07} (\text{sig.th.})$

Establishes directly the tree-level coupling to an up-type quark

- Biggest branching fraction, but massive bb background from QCD processes
 - Choose a weak interaction production mode to reduce hadronic backgrounds (QCD multijet, top, mainly Associated Production with a W or Z, VH(bb)
- Signal is a di-jet mass enhancement which has many challenges
- Three channels in VH(bb): V(W \rightarrow /n,Z \rightarrow II,Z \rightarrow nn) H(bb)
 - Require Vector Boson to be back-to-back w.r.t. the bb system
- Several Improvements for 2017 analysis, including heavy reliance on DNNs, DEEPCSV
- Analysis validated using VZ(bb)

A ZH(bb) Candidate Event

Combination of all H->bb results from Run 1 and 2 arxiv:1808.08242

- VH(bb) from 2016/17 at 13 TeV, 77.2 fb⁻¹
 - Significance: 4.4 σ obs (4.2 exp)
- With VH(bb) including also 7 and 8 TeV
 - Significance: 4.8 σ obs (4.9 exp)
- Including new results and all published data from Run 1 and Run 2
 - Run 1:
 - ■ttH(bb), VBF $H \rightarrow bb$, VH(bb)
 - Run 2:
 - ttH(bb), Boosted ggH(bb) (2016)
 - VH, H→bb (2016 + 2017)

5.6 (5.5) σ observed (exp.) for H \rightarrow bb!

$$\mu = 1.04 + 0.20 - 0.19$$

Higgs to bosons – entering precision era

Higgs mass

- Most precise measurement at the moment comes from CMS H→ZZ→4l mass measurement with 2016 data m_H = 125.26±0.21 GeV
- Still limited by statistical uncertainties → impact on coupling ~0.5%

Higgs differential cross sections

- Measurements of fiducial and differential cross-section distributions made already at Run-1 with low statistics
- Now with more bins and better precision

Simplified template cross sections

- Simplified template cross-sections (STXS) defined by common effort in LHC Higgs cross-section group
- Using these, and/or individual experimental measurements, EFT fits will allow more detailed SM tests – and perhaps provide hints of BSM structure

Higgs rare decays

Many studies, all compatible with SM predictions

ggH-tag

m_н [GeV]

Combined Higgs boson couplings

- Overall signal strength compatible with the SM
- Not anymore dominated by statistics, already moving to less inclusive measurements

Close to have observed the couplings with all 3rd generation fermions

• One of the targets of LHC Run2

CMS 13 TeV 2016 combination

- LHC and ATLAS/CMS status
- Physics Results
 - Higgs
 - SM Physics
 - Direct searches for BSM
- Outlook and Summary

SM measurements: motivation

 Self-consistency test of the Standard Model

 \rightarrow over-constrain the system: e.g. $\sin^2\theta_w = 1 - M^2_w/M^2_z$ (@ tree)

• Probe new physics

Gfitter: Haller, Hoecker, Kogler, Mönig, Stelzer '18]

Precision W/top masses

Self-consistency test of the Standard Model

 \rightarrow over-constrain the system: e.g. $\sin^2\theta_w = 1 - M^2_w/M^2_z$ (@ tree)

• Probe new physics

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} summary, f s = 7-13 TeV	September 2017	
World Comb. Mar 2014, [7]	total stat		
stat	to the other		
total uncertainty	m _{kop} ± total (stat ± syst)	s Ref.	
ATLAS, I+jets (*)	172.31±1.55 (0.75±1.35)	7 TeV [1]	
ATLAS, dilepton (*)	173.09 ± 1.63 (0.64 ± 1.50)	7 TeV [2]	
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [3]	
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]	
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [5]	
HC comb. (Sep 2013) LHC top WG	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [6]	
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]	
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]	
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]	
ATLAS, all jets	175.1±1.8 (1.4±1.2)	7 TeV [9]	
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [10]	
TLAS, dilepton	H 172.99 ± 0.85 (0.41± 0.74)	8 TeV [11]	
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [12]	
ATLAS, I+jets	172.08 ± 0.91 (0.38 ± 0.82)	8 TeV [13]	
ATLAS comb. (Sep 2017) H+H	172.51 ± 0.50 (0.27 ± 0.42)	7+8 TeV [13]	
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [14]	
CMS, dilepton		8 TeV [14]	
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [14]	
MS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [15]	
CMS comb. (Sep 2015)	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [14]	
CMS, I+jets	172:25 ± 0.63 (0.08 ± 0.62) 1) ATL&CONF-JETS-ME 2) ATL&CONF-JETS-ME 2) ATL&CONF-JETS-ME 2) ATL# 2 (2012) 168 4) EurimyLCT2 (2012) 1280 4) EurimyLCT2 (13 TeV [16] [13] ATLAS-COMF-SHT-SHT [14] Phys.Rev.Dib (2018)272088 [15] EM2-07 (2017) 254 [16] CM3-PAS-TOP-17-007	
hown below the line	[1] ATLAS-CONF-2013-162 [12] #7K+1792.47546		
165 170	175 180	185	

m_{top} error (ATLAS or CMS) from direct reco ~0.5 GeV

W mass @LHC only from ATLAS

±19 MeV m_w **from ATLAS** EPJC78 (2018) 110

SM production cross section measurements

Overall good agreement with SM over 9 orders of magnitude

Probing anomalous TGC/QGC

-0.5	U	0.5		1.5	
_05		0.5	1	1 5	
	, He H ,	LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
	⊢●┥	D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV
	Н	WV	[-1.1e-02, 1.1e-02]	19 fb ⁻¹	8 TeV
	H	WV	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV
	н	WV (lvJ)	[-1.3e-02, 1.3e-02]	20.2 fb ⁻¹	8 TeV
	н	WV (lvjj)	[-2.2e-02, 2.2e-02]	20.2 fb ⁻¹	8 TeV
	H-I	WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
	H o l	WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
		WW	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV
	н	ww	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV
(· · ·	Wγ	[-5.0e-02, 3.7e-02]	5.0 fb ⁻¹	7 TeV
		Wγ	[-6.5e-02, 6.1e-02]	4.6 fb ⁻¹	7 TeV
	. <u> </u>	LEP Comb.	[-9.9e-02, 6.6e-02]	0.7 fb ⁻¹	0.20 TeV
	· · ·	D0 Comb.	[-1.6e-01, 2.5e-01]	8.6 fb ⁻¹	1.96 TeV
	· · ·	wv	[-4.4e-02, 6.3e-02]	19 fb ⁻¹	8 TeV
		WV	[-1 1e-01, 1 4e-01]	5.0 fb ⁻¹	7 TeV
		WV (lv.l)	[-6.1e-02, 6.4e-02]	20.2 fb ⁻¹	8 TeV
		WV (biii)	[-2.1e-01, 2.2e-01]	4.0 ID	8 TeV
		WWW	[-1.3e-01, 9.5e-02]	19.4 fb	8 lev
		WW	[-2.1e-01, 2.2e-01]	4.9 fb	7 lev
-γ -		ννγ	[-3.8e-01, 2.9e-01]	5.0 fb ⁻¹	7 lev
с.,		Wγ	[-4.1e-01, 4.6e-01]	4.6 fb '	7 lev
L	EP -	Channel	Limits) Lat	VS
		Channel Wγ	Limits [-4.1e-01, 4.6e-01]	∫ <i>L</i> dt 4.6 fb ⁻¹	√s 7 TeV

Heavy flavor

• Angular analyses of flavor-changing neutral current decay $B \rightarrow K(^*)\mu^+\mu^-$

- LHC and ATLAS/CMS status
- Physics Results
 - Higgs
 - SM Physics
 - Direct searches for BSM
- Outlook and Summary

Search for high-mass di-lepton resonances

• Limits for high mass searches extending beyond 4 TeV with first 2017 data analyses

Di-boson resonance searches

- Substructure techniques (for jets, b-tagging) used for maximizing sensitivity to boosted topologies, large mass range
 - Includes using the Higgs as a discovery tool ("Higgs-tagging")

Comprehensive di-boson search programs

Additional Higgs ?

Many searches, no significant excess yet

Dark matter searches

mono-X type search

Dark matter searches

No hints at LHC yet

What if Dark Matter doesn't couple to quarks CMS-PAS-EXO-18-008

- Also motivated by LFU tensions and muon g-2
- Search for an L_{μ} - L_{τ} gauge boson: a narrow light Z' decaying in $\mu^{+}\mu^{-}$ with Z \rightarrow 4 μ events

Many other exotica and SUSY searches

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Looking forwards

Expect ~150 fb⁻¹ (almost double 2016+2017) by the end of 2018

Much more work now devoted to upgrades

Summary

- Approaching a decade after the start, the LHC is now a mature machine, and the detectors are stable, and very well understood
- Direct observation on ttH: it's there at tree-level, and y_t≈1
- Established the Yukawa couplings to the heaviest fermions, τ, b, top
- Still no significant deviation/excess from CMS, but only two percents of the full LHC data sample analyzed!
- Completion of Run-2, upgrades and then much more data beyond
- Let's hope something is still hiding out there

The future is bright!

back up

- Signature is production of two top quarks and a Higgs
 - The top is observed its its decay to Wb with the W decaying leptonically or hadronically
 - The analysis uses Higgs decays to bottom-quark-anti quark pairs, τ⁺τ⁻, γγ, WW* and ZZ* (various quark and multi-lepton channels)
 - Hadronic τ decays, τ_h , are used
 - A total of 88 different event topologies, consisting of leptons, photons and jets, are combined to get the result
 - Use of Deep Neural Nets is pervasive
- Main systematic uncertainties are
 - Experimental: lepton and b jet identification efficiencies; τ_h and jet energy scales
 - Theory on background calculations: modelling uncertainties in tt production in association with a W or Z or a pair of b or c jets
 - Theory on signal calculations: effect of higher order corrections on ttH cross sections and uncertainty in proton PDFs
- The $\gamma\gamma$ and ZZ* states are limited by statistics; H \rightarrow bb and H \rightarrow leptons by systematics

H→bb: explore new regimes/ideas Phys.Rev.Lett. 120 (2018) 071802, CERN-EP-2018-140

• Direct search for $gg \rightarrow H \rightarrow bb$ • Search for VBF, with an with boosted $H \rightarrow bb$ events additional high p_T photon

Higgs $\rightarrow \mu^+\mu^-$

CMS-HIG-17-019

- Best chance at measuring a coupling to a second generation fermion, even though branching fraction (BR) ~ 2.2x10⁻⁴, about 1/10 of γγ.
- CMS has looked for this in 7,8, and 13 TeV (2016 only) data
- Current 95% CL upper limit on BR is 6.4x10⁻⁴, 2.92 (observed) vs 2.16 (expected) of the SM prediction.

