2018 手征有效场论研讨会

Changchun, September 2nd, 2018

Relativistic nucleon-nucleon contact Lagrangian

Yang Xiao (肖杨) School of Physics and Nuclear Energy Engineering, Beihang University

In collaboration with Xiu-Lei Ren and Li-Sheng Geng

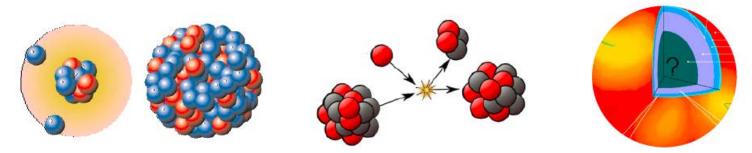
- □ Why relativistic nucleon-nucleon Lagrangian
- □ Generalities & strategy
- □ Results
- Non-relativistic reduction
- **D** Summary and outlook

Why relativistic nucleon-nucleon Lagrangian

- □ Generalities & strategy
- Results
- Non-relativistic reduction
- **D** Summary and outlook

Why nuclear force

DMicroscopic nature of the material world

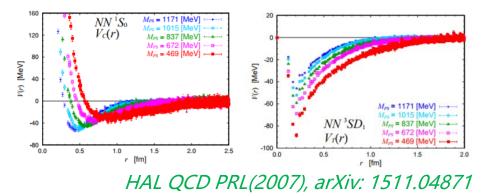


What binds the nucleons together ?
One of the most important inputs in nuclear physics



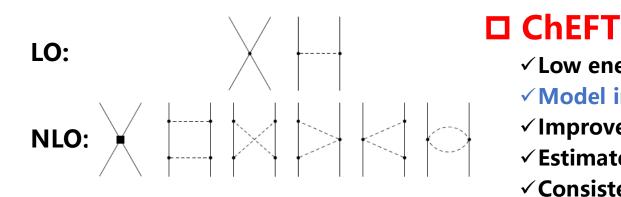
John Dalton Thomson Joseph John Ernest Rutherford James Chadwick

Main methods for nuclear force study



Phenomenological model

- ✓ High precision
- Not constructed from **fundamental level**



□ Lattice QCD

- numerical method of **QCD** \checkmark
- ✓ Ab initio

✓ Low energy QCD

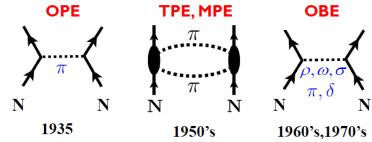
✓ Model independently

Far away from physical region

✓ Improve calculations systematically

✓ Estimate theoretical uncertainties

Consistent many body interactions



Chiral NN potential is of high precision

Phenomenological forces

NR Chiral nuclear force

	Reid93	CD-Bonn	LO	NLO	N2LO	N3LO	N4LO
No. of para.	50	38	2	9	9	24	24
χ^2 /datum	1.03	1.02	94	36.7	5.28	1.27	1.10

D.Entem, et al., PRC96(2017)024004

Current status for chiral nuclear force (NF) DN interaction

- Non-relativistic
 - Up to NLO U. van Kolck et al., PRL, PRC1992-94; N. Kaiser, NPA1997
 - Up to NNLO U. van Kolck et al., PRC1994; E. Epelbaum, et al., NPA2000
 - Up to N3LO *R. Machleidt et al., PRC2003; E. Epelbaum et al., NPA2005*
 - Up to N4LO E. Epelbaum et al., PRL2015, D.R. Entem, et al., PRC2015

– Relativisitic

• Up to LO Xiu-Lei Ren, Kai-Wen Li, Li-Sheng Geng, Bing-Wei Long, Peter Ring, Jie Meng., CPC 2018

Why covariant

- Lorentz invariance is one of the most important symmetries in nature.
- Quantum mechanics & Special relativity: two pillars of modern physics
- Relativistic approaches successful
 - Nuclear system: spin-orbit splitting, pseudospin symmetry
 - One-baryon sector: magnetic moments, masses, sigma terms

Relativistic chiral nuclear force is promising !

Current status for covariant contact Lagrangians

- □Nucleon-nucleon sector
 - Up to LO: 5 terms CPC 42 (2018) no.1, 014103
 - Up to NLO: 36 terms Phys. Rev. C81 (2010) 034005
- □Baryon-baryon sector
 - Up to LO: 15 terms CPC 42 (2018) no.1, 014105
 - Up to NLO: 75 terms Nucl. Phys., A916 (2013) 1

□Inadequacy

- Not all of them are **linear independently** (*for those up to NLO*)
- Too many Low energy constants up to NLO, especially for baryonbaryon sector, compared with experiment data.

Our purpose

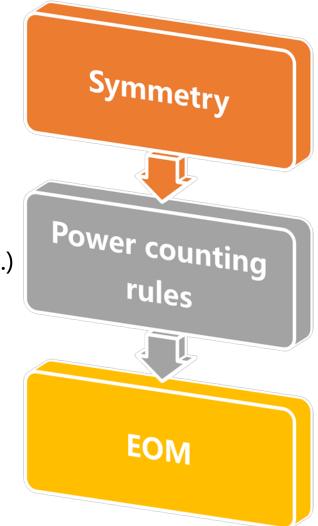
***** Construct the complete and minimal *NN (BB)* contact Lagrangians

- Why relativistic nucleon-nucleon Lagrangian
- Generalities & strategy
- Results
- Non-relativistic reduction
- **D** Summary and outlook

How to construct Lagrangians

Fundamental requirement

- Symmetry
 - Lorentz
 - Chiral (R)
 - Charge conjugation (C), Parity (P),Time inverse (T) and Hermitian conjugation (h.c.)
- □ How to raise chiral order ?
 - Power counting rules
- □ How to deal with redundant terms ?
 - Equation of motion (EOM)



Symmetry requirements

- Lorentz invariant: α , β , γ
- Chiral symmetry: Automatically fulfilled. $\psi \rightarrow K \psi K^{\dagger}$
- Hermitian conjugation symmetry: No constraint.
- Parity symmetry and Charge conjugation symmetry: Important !
- Time inverse symmetry: CPT theory.
- Behavior under several transformations

	1	γ_5	γ_{μ}	$\gamma_5 \gamma_\mu$	$\sigma_{\mu\nu}$	$\epsilon_{\mu\nu ho\sigma}$	$\overleftrightarrow_{\mu}$	∂_{μ}
\mathcal{P}	+	—	+	—	+	_	+	+
\mathcal{C}	+	+	_	+	_	+	_	+
h.c.	+	_	+	+	+	+	_	+
\mathcal{O}	0	1	0	0	0	_	0	1

$$\checkmark \overleftarrow{\partial}^{\alpha} = \overrightarrow{\partial}^{\alpha} - \overleftarrow{\partial}^{\alpha}$$
$$\checkmark \partial^{\alpha} = \partial^{\alpha} (\overline{\psi} \Gamma \psi)$$
$$\frac{1}{2m)^{N_d}} \left(\bar{\psi} i \overleftrightarrow{\partial}^{\alpha} i \overleftrightarrow{\partial}^{\beta} ... \Gamma_A \psi \right) \partial^{\lambda} \partial^{\mu} ... \left(\bar{\psi} i \overleftrightarrow{\partial}^{\sigma} i \overleftrightarrow{\partial}^{\tau} ... \Gamma_B \psi \right)$$

Power counting rules

• General expression:
$$\frac{1}{(2m)^{N_d}} \left(\bar{\psi} i \overleftrightarrow{\partial}^{\alpha} i \overleftrightarrow{\partial}^{\beta} ... \Gamma_A \psi \right) \partial^{\lambda} \partial^{\mu} ... \left(\bar{\psi} i \overleftrightarrow{\partial}^{\sigma} i \overleftrightarrow{\partial}^{\tau} ... \Gamma_B \psi \right)$$

 N_d is the number of four component, $\vec{\partial} = \vec{\partial} - \vec{\partial}$

- Nucleon field: $\psi = {p \choose n} \sim O(p^0)$, Nucleon mass: $m \sim O(p^0)$,
- Clifford algebra: $\Gamma \in \{1, \gamma_{\mu}, \gamma_{5}\gamma_{\mu}, \sigma_{\mu\nu} \sim O(p^{0}), \gamma_{5} \sim O(p^{1})\}$
- Covariant derivative: $\partial(\bar{\psi}\Gamma\psi) \sim O(p^1), (\bar{\psi}\bar{\partial}\psi) \sim O(p^0)$
- Unique structure: $(\bar{\psi}\sigma_{\mu\nu}\psi)(\bar{\psi}\overleftrightarrow{\partial}^{\mu}\Gamma\psi) \sim O(p^1), (\bar{\psi}\gamma_5\gamma_{\mu}\psi)(\bar{\psi}\overleftrightarrow{\partial}^{\mu}\Gamma\psi) \sim O(p^1)$
- Treatment for covariant derivative:

$$\widetilde{O}_{\Gamma_{A}\Gamma_{B}}^{(n)} = \frac{1}{(2m)^{2n}} (\overline{\psi} \, i \overleftrightarrow{\partial}_{\mu_{1}} \, i \overleftrightarrow{\partial}_{\mu_{2}} \cdots i \overleftrightarrow{\partial}_{\mu_{n}} \Gamma_{A} \, \psi) \, (\overline{\psi} \, i \overleftrightarrow{\partial}_{\mu_{1}} \, i \overleftrightarrow{\partial}_{\mu_{2}} \cdots i \overleftrightarrow{\partial}_{\mu_{n}} \Gamma_{B \, \alpha} \, \psi)$$
Expansion of such structure: $1 + \frac{n}{4m^{2}} \left[\mathbf{p}_{1}^{2} + \mathbf{p}_{2}^{2} + \mathbf{p}_{3}^{2} + \mathbf{p}_{4}^{2} - (\mathbf{p}_{1} + \mathbf{p}_{3}) \cdot (\mathbf{p}_{2} + \mathbf{p}_{4}) \right]$
Differences are of high order: $n = 0$

A Reduction of equation of motion (EOM)

Equation of motion: $D B = \gamma^{\mu} D_{\mu} B = -i M_0 B + O(q)$

\square Beyond the obvious replacements one can bring terms not containing DB into a form where they do. *Annals Phys., 283:273, (2000)*

Given Summary:

-
$$\gamma^{\mu} \Leftrightarrow \overleftrightarrow{\partial}^{\mu}$$
;

- $\gamma_5 \gamma^\mu \Leftrightarrow \epsilon_{\mu\nu\alpha\beta} \sigma^{\alpha\beta} \overleftrightarrow{\partial}^{\nu};$

-
$$\sigma_{\mu\nu} \Leftrightarrow \epsilon_{\mu\nu\alpha\beta}\gamma_5\gamma^{\alpha}\overleftrightarrow{\partial}^{\beta};$$

-
$$\epsilon_{\mu\nu\alpha\beta}\left(\overline{\psi}\overleftrightarrow{\partial}^{\mu}\overleftrightarrow{\partial}^{\nu}\dots\Gamma\psi\right) = 0;$$

Г	Γ'_{λ}	$\Gamma_{\lambda}^{''}$
1	γ_{λ}	0
γ_{μ}	$g_{\mu\lambda} 1$	$-i\sigma_{\mu\lambda}$
γ_5	0	$\gamma_5 \gamma_\lambda$
$\gamma_5\gamma_\mu$	$\frac{1}{2}\epsilon_{\mu\lambda ho\tau}\sigma^{ ho au}$	$g_{\mu\lambda}\gamma_5$
$\sigma_{\mu u}$	$\epsilon_{\mu\nu\lambda\tau}\gamma_5\gamma^\tau$	$-i\left(g_{\mu\lambda}\gamma_{\nu}-g_{\nu\lambda}\gamma_{\mu}\right)$
$\epsilon_{\mu\nu\rho\tau}\gamma^{\tau}$	$\epsilon_{\mu u ho\lambda}1$	$g_{\mu\lambda}\gamma_5\sigma_{\nu\rho} + g_{\rho\lambda}\gamma_5\sigma_{\mu\nu} + g_{\nu\lambda}\gamma_5\sigma_{\rho\mu}$
$\epsilon_{\mu u ho au}\gamma_5\gamma^{ au}$	$g_{\mu\lambda}\sigma_{\nu\rho} + g_{\rho\lambda}\sigma_{\mu\nu} + g_{\nu\lambda}\sigma_{\rho\mu}$	$\epsilon_{\mu u ho\lambda}\gamma_5$
$\epsilon_{\mu u holpha}\sigma^{lpha}_{ au}$	$\gamma_5\gamma_ ho\left(g_{\lambda\nu}g_{\mu\tau}-g_{\lambda\mu}g_{\nu\tau} ight)+$	$ig_{\lambda\tau}\epsilon_{\mu\nu\rho\alpha}\gamma^{\alpha} - i\epsilon_{\mu\nu\rho\lambda}\gamma_{\tau}$
	$\gamma_5\gamma_{\nu}\left(g_{\lambda\mu}g_{\rho\tau}-g_{\lambda\rho}g_{\mu\tau}\right)+$	
	$\gamma_5 \gamma_\mu \left(g_{\lambda\rho} g_{\nu\tau} - g_{\lambda\nu} g_{\rho\tau} \right)$	
$\frac{i}{2}\epsilon_{\mu\nu\rho\tau}\sigma^{\rho\tau} = \gamma_5\sigma_{\mu\nu}$	$\frac{1}{i} \left(g_{\mu\lambda} \gamma_5 \gamma_\nu - g_{\nu\lambda} \gamma_5 \gamma_\mu \right)$	$\epsilon_{\mu\nu\lambda ho}\gamma^{ ho}$

$$Y(\Theta^{i} = {\Gamma'}^{\lambda} D_{\lambda}^{n_{i}}) \approx -\mathrm{i} M_{0} Y(\Theta^{i} = \Gamma D^{n_{i}-1})$$

- No two Lorentz indices inside a fermion bilinear can be contracted with one another, except for Levi-Civita tensor, ∂^{μ} contracting with $\sigma_{\mu\nu}$ and ∂^{2} acting on the whole bilinear.

- □ Why relativistic nucleon-nucleon Lagrangian
- □ Generalities & strategy

Results

- Non-relativistic reduction
- **D** Summary and outlook

Covariant NN contact Lagrangians (NLO)

$$\begin{array}{c|c} \widetilde{\mathcal{O}}_{1} & \left(\bar{\psi}\psi\right)\left(\bar{\psi}\psi\right) \\ \widetilde{\mathcal{O}}_{2} & \left(\bar{\psi}\gamma^{\mu}\psi\right)\left(\bar{\psi}\gamma_{\mu}\psi\right) \\ \widetilde{\mathcal{O}}_{3} & \left(\bar{\psi}\gamma_{5}\gamma^{\mu}\psi\right)\left(\bar{\psi}\gamma_{5}\gamma_{\mu}\psi\right) \\ \widetilde{\mathcal{O}}_{4} & \left(\bar{\psi}\sigma^{\mu\nu}\psi\right)\left(\bar{\psi}\sigma_{\mu\nu}\psi\right) \\ \widetilde{\mathcal{O}}_{5} & \frac{1}{4m^{2}}\left(\bar{\psi}\psi\right)\partial^{2}\left(\bar{\psi}\psi\right) \\ \widetilde{\mathcal{O}}_{6} & \frac{1}{4m^{2}}\left(\bar{\psi}\gamma^{\mu}\psi\right)\partial^{2}\left(\bar{\psi}\gamma_{5}\psi\psi\right) \\ \widetilde{\mathcal{O}}_{7} & \frac{1}{4m^{2}}\left(\bar{\psi}\gamma^{\mu}\psi\right)\partial^{2}\left(\bar{\psi}\gamma_{5}\gamma_{\mu}\psi\right) \\ \widetilde{\mathcal{O}}_{8} & \frac{1}{4m^{2}}\left(\bar{\psi}\sigma^{\mu\rho}\overline{\partial}^{\nu}\psi\right)\left(\bar{\psi}\sigma_{\mu\nu}\overline{\partial}^{\rho}\psi\right) \\ \widetilde{\mathcal{O}}_{8} & \frac{1}{4m^{2}}\left(\bar{\psi}\gamma_{5}\gamma^{\mu}\overline{\partial}^{\nu}\psi\right)\left(\bar{\psi}\sigma_{\mu\nu}\overline{\partial}^{\rho}\psi\right) \\ \widetilde{\mathcal{O}}_{11} & \left(\bar{\psi}\gamma_{5}\psi\right)\left(\bar{\psi}\gamma_{5}\psi\right)\left(\bar{\psi}\gamma_{5}\psi\psi\right) \\ \widetilde{\mathcal{O}}_{12} & \frac{i}{4m^{2}}\left(\bar{\psi}\sigma^{\mu\rho}\psi\right)\partial_{\mu}\left(\bar{\psi}\overline{\partial}^{\rho}\psi\right) \\ \widetilde{\mathcal{O}}_{13} & \frac{1}{2m}\left(\bar{\psi}\sigma^{\mu\rho}\psi\right)\partial_{\mu}\left(\bar{\psi}\gamma_{\rho}\psi\right) \end{array}$$

Relativistic: 4+9 VS. Non-relativistic: 2+7

- □ Why relativistic nucleon-nucleon Lagrangian
- □ Generalities & strategy
- □ Results
- Non-relativistic reduction
- **D** Summary and outlook

Non-relativistic reduction

Why do non-relativistic reduction: Self consistent check

Don-relativistic expansion: $\psi \rightarrow N$, expand Lagrangians in terms of 1/m

- Relativistic nucleon field operator: $\psi(x) = \int \frac{d\mathbf{p}}{(2\pi)^3} \frac{m}{E_p} \widetilde{b}_s(\mathbf{p}) u^{(s)}(\mathbf{p}) e^{-ip \cdot x}$,
- Non-relativistic nucleon field operator: $N(x) = \int \frac{d\mathbf{p}}{(2\pi)^3} b_s(\mathbf{p}) \chi_s e^{-i\mathbf{p}\cdot x}$
- Expansion of field operator

$$\psi(x) = \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{i}{2m} \begin{pmatrix} 0 \\ \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} \end{pmatrix} + \frac{1}{8m^2} \begin{pmatrix} \boldsymbol{\nabla}^2 \\ 0 \end{pmatrix} \right] N(x) + \mathcal{O}(Q^3)$$

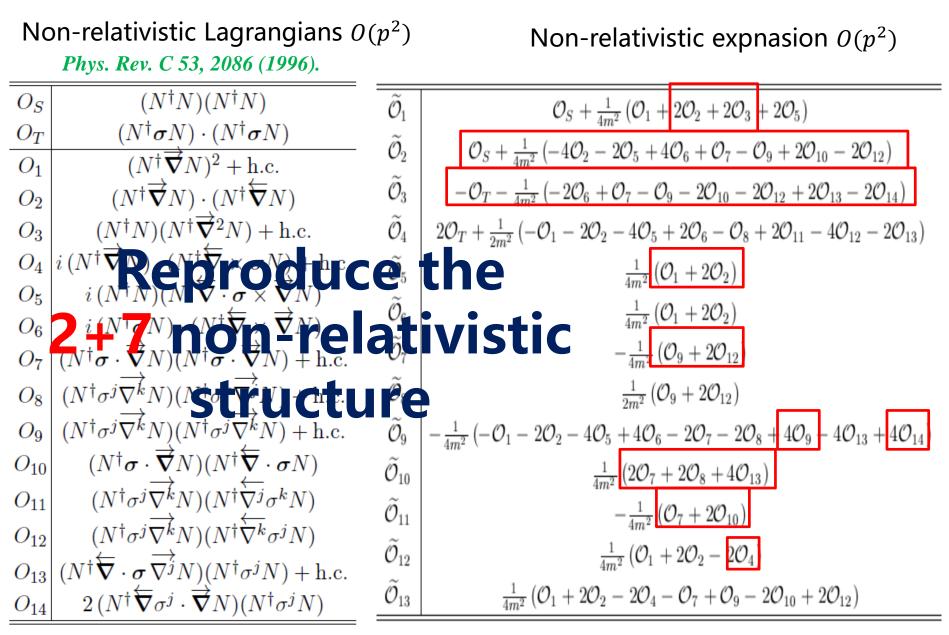
• Dirac matrices

$$\gamma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \gamma^{5} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \overrightarrow{\gamma} = \begin{pmatrix} 0 & \overrightarrow{\sigma} \\ -\overrightarrow{\sigma} & 0 \end{pmatrix}, \sigma^{\mu\nu} = \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right].$$

Non-relativistic reduction

Non-relativistic Lagrangians <i>O</i> <i>Phys. Rev. C 53, 2086 (1996).</i>	(p ²)	Non-relativistic expnasion $O(p^2)$		
O_S $(N^{\dagger}N)(N^{\dagger}N)$	$\widetilde{\mathcal{O}}_1$	$\mathcal{O}_S + \frac{1}{4m^2} \left(\mathcal{O}_1 + 2\mathcal{O}_2 + 2\mathcal{O}_3 + 2\mathcal{O}_5 \right)$		
$O_T \qquad (N^{\dagger} \sigma N) \cdot (N^{\dagger} \sigma N)$	$\widetilde{\mathcal{O}}_2$	$\mathcal{O}_{S} + \frac{1}{4m^{2}} \left(-4\mathcal{O}_{2} - 2\mathcal{O}_{5} + 4\mathcal{O}_{6} + \mathcal{O}_{7} - \mathcal{O}_{9} + 2\mathcal{O}_{10} - 2\mathcal{O}_{12} \right)$		
$\begin{array}{cc} O_1 & (N^{\dagger} \overrightarrow{\nabla} N)^2 + \text{h.c.} \\ O_2 & (N^{\dagger} \overrightarrow{\nabla} N) \cdot (N^{\dagger} \overleftarrow{\nabla} N) \end{array}$	$\widetilde{\mathcal{O}}_3$	$-\mathcal{O}_T - \frac{1}{4m^2} \left(-2\mathcal{O}_6 + \mathcal{O}_7 - \mathcal{O}_9 - 2\mathcal{O}_{10} - 2\mathcal{O}_{12} + 2\mathcal{O}_{13} - 2\mathcal{O}_{14} \right)$		
$\begin{array}{ccc} O_2 & (N^{\dagger} \overrightarrow{\nabla} N) \cdot (N^{\dagger} \overrightarrow{\nabla} N) \\ O_3 & (N^{\dagger} N) (N^{\dagger} \overrightarrow{\nabla}^2 N) + \text{h.c.} \end{array}$	$\widetilde{\mathcal{O}}_4$	3478		
$O_3 (N^{\dagger} \overrightarrow{\nabla} N) (N^{\dagger} \overrightarrow{\nabla} N) + \text{h.c.}$ $O_4 i (N^{\dagger} \overrightarrow{\nabla} N) \cdot (N^{\dagger} \overleftarrow{\nabla} \times \sigma N) + \text{h.c.}$	$\widetilde{\mathcal{O}}_4$ $\widetilde{\mathcal{O}}_5$	$2\mathcal{O}_T + \frac{1}{2m^2} \left(-\mathcal{O}_1 - 2\mathcal{O}_2 - 4\mathcal{O}_5 + 2\mathcal{O}_6 - \mathcal{O}_8 + 2\mathcal{O}_{11} - 4\mathcal{O}_{12} - 2\mathcal{O}_{13} \right)$		
$O_{5} = \begin{bmatrix} i (N^{\dagger}N)(N^{\dagger} \overleftarrow{\nabla} \cdot \sigma \times \overrightarrow{\nabla}N) \\ i (N^{\dagger}N)(N^{\dagger} \overleftarrow{\nabla} \cdot \sigma \times \overrightarrow{\nabla}N) \end{bmatrix}$	~	$\frac{1}{4m^2}\left(\mathcal{O}_1+2\mathcal{O}_2\right)$		
$O_6 \qquad i \left(N^{\dagger} \boldsymbol{\sigma} N \right) \cdot \left(N^{\dagger} \overleftarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{\nabla}} N \right)$	\mathcal{O}_6	$\frac{1}{4m^2}\left(\mathcal{O}_1+2\mathcal{O}_2\right)$		
$O_7 \left[(N^{\dagger} \boldsymbol{\sigma} \cdot \overrightarrow{\boldsymbol{\nabla}} N) (N^{\dagger} \boldsymbol{\sigma} \cdot \overrightarrow{\boldsymbol{\nabla}} N) + \text{h.c.} \right]$	$\widetilde{\mathcal{O}}_7$	$-rac{1}{4m^2}\left(\mathcal{O}_9+2\mathcal{O}_{12} ight)$		
$O_8 \left[(N^{\dagger} \sigma^j \overrightarrow{\nabla^k} N) (N^{\dagger} \sigma^k \overrightarrow{\nabla^j} N) + \text{h.c.} \right]$	$\widetilde{\mathcal{O}}_8$	$rac{1}{2m^2}\left(\mathcal{O}_9+2\mathcal{O}_{12} ight)$		
$O_9 \left[(N^{\dagger} \sigma^j \overrightarrow{\nabla^k} N) (N^{\dagger} \sigma^j \overrightarrow{\nabla^k} N) + \text{h.c.} \right]$	$\widetilde{\mathcal{O}}_9$	$-\frac{1}{4m^2}\left(-\mathcal{O}_1 - 2\mathcal{O}_2 - 4\mathcal{O}_5 + 4\mathcal{O}_6 - 2\mathcal{O}_7 - 2\mathcal{O}_8 + 4\mathcal{O}_9 - 4\mathcal{O}_{13} + 4\mathcal{O}_{14}\right)$		
$O_{10} \qquad (N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N)(N^{\dagger}\overleftarrow{\boldsymbol{\nabla}}\cdot\boldsymbol{\sigma}N)$	$\widetilde{\mathcal{O}}_{10}$	$\frac{1}{4m^2} \left(2\mathcal{O}_7 + 2\mathcal{O}_8 + 4\mathcal{O}_{13} \right)$		
$O_{11} \qquad (N^{\dagger} \sigma^{j} \overrightarrow{\nabla^{k}} N) (N^{\dagger} \overleftarrow{\nabla^{j}} \sigma^{k} N)$	$\widetilde{\mathcal{O}}_{11}$	$-rac{1}{4m^2}(\mathcal{O}_7+2\mathcal{O}_{10})$		
$O_{12} \qquad (N^{\dagger} \sigma^{j} \overrightarrow{\nabla^{k}} N) (N^{\dagger} \overleftarrow{\nabla^{k}} \sigma^{j} N)$	$\widetilde{\mathcal{O}}_{12}$	$\frac{1}{4m^2} \left(\mathcal{O}_1 + 2\mathcal{O}_2 - 2\mathcal{O}_4 \right)$		
$O_{13} \mid (N^{\dagger} \overleftarrow{\nabla} \cdot \sigma \overrightarrow{\nabla^{j}} N) (N^{\dagger} \sigma^{j} N) + \text{h.c.}$	\sim	4110		
$O_{14} \qquad 2\left(N^{\dagger}\overleftarrow{\nabla}\sigma^{j}\cdot\overrightarrow{\nabla}N\right)\left(N^{\dagger}\sigma^{j}N\right)$	\mathcal{O}_{13}	$\frac{1}{4m^2}\left(\mathcal{O}_1 + 2\mathcal{O}_2 - 2\mathcal{O}_4 - \mathcal{O}_7 + \mathcal{O}_9 - 2\mathcal{O}_{10} + 2\mathcal{O}_{12}\right)$		

Non-relativistic reduction



- □ Why relativistic nucleon-nucleon Lagrangian
- □ Generalities & strategy
- Results
- Non-relativistic reduction
- Summary and outlook

DSummary

- We construct the covariant nucleon-nucleon contact Lagrangian up to **next-to-leding order** $O(q^2)$ in our power counting rule.
- There are in total 13 terms up to next-to-leading order.

DUtlook

- Construct the covariant nucleon-nucleon contact Lagrangian up to **next-to-next-to-leading order** $O(q^4)$ and do the **non-relativistic reduction** to check our **power counting rules**.
- Extend our study to **baryon-baryon** sector.

