Effect of Z_b states and bottom meson loops in $\Upsilon(3S, 4S)$ dipion transitions

Yun-Hua Chen

based on Phys. Rev. D93 (2016) 034030, Phys. Rev. D95 (2017) 034022

University of Science and Technology Beijing

August 30th, 2018

The 5th chiral EFT workshop, ChangChun

Outline

- $\Upsilon(3S) \to \Upsilon(1S)\pi\pi$
 - Motivation
 - Theoretical framework
 - * Heavy meson chiral effective theory
 - * Dispersion theory, modified Omnés solutions
 - Numerical fits
- $\Upsilon(4S) \to \Upsilon(1S, 2S)\pi\pi$
 - Theoretical framework
 - * Nonrelativistic effective field theory
 - * Two-channel Omnés solutions
 - Phenomenology discussion
- Conclusions

• Typical theoretical method to study $\Upsilon(nS) \rightarrow \Upsilon(mS)\pi\pi$: QCD multipole expansion + soft-pion theorems

- A well-known anomaly for the $\pi\pi$ mass spectra of $\Upsilon(3S) \to \Upsilon(1S)\pi\pi$
 - Experimental data: two-hump behavior
 - Theoretical prediction : a single peak

Various mechanisms to explain this discrepancy

- coupled-channel effects with open-bottom intermediate states [H. J. Lipkin and S. F. Tuan, PRL'1988]
- a hypothetical resonance which couples to $\Upsilon \pi$: $b\bar{b}q\bar{q}$, $I^G(J^P) = 1^+(1^+)$ [V. V. Anisovich, D. V. Bugg, A. V. Sarantsev and B. S. Zou, PRD'1995]
- the $\pi\pi$ resonance [the $f_0(500)$ or σ meson] or strong $\pi\pi$ final-state interaction [G. Bélanger, T. A. DeGrand and P. Moxhay, PRD'1989]
- relativistic corrections
 - [M. B. Voloshin, PRD'2006]

In 2011, $Z_b(10610)^{\pm}$ and $Z_b(10650)^{\pm}$ were observed in the decay processes $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ (n = 1, 2, 3) and $\Upsilon(5S) \to h_b(mP)\pi^+\pi^-$ (m = 1, 2) by the Belle Collaboration. Their quantum numbers are indeed $I^G(J^P) = 1^+(1^+)$.

Our strategy:

- dispersion theory, based on unitarity, analyticity and crossing symmetry \Rightarrow account for the $\pi\pi$ rescattering in a model-independent way
- consider the effects of the measured two Z_b s, which provide a left-hand-cut contribution
- the subtraction constants are obtained by matching the dispersive amplitudes to heavy meson chiral effective theory

• tree-level calculation

in the heavy-quark limit, the heavy quarks' spin decouples: $J\equiv\Upsilon\cdot\sigma+\eta_b$

$$\mathscr{L}_{\Upsilon\Upsilon'\pi\pi} = \frac{c_1}{2} \langle J^{\dagger} J' \rangle \langle u_{\mu} u^{\mu} \rangle + \frac{c_2}{2} \langle J^{\dagger} J' \rangle \langle u_{\mu} u_{\nu} \rangle v^{\mu} v^{\nu} + \text{h.c.}$$
(1)

$$\mathscr{L}_{Z_b\Upsilon\pi} = C_Z\Upsilon^i \langle Z^{i\dagger} u_\mu \rangle v^\mu + \text{h.c.}$$
⁽²⁾

where $v^{\mu} = (1, \mathbf{0})$: the velocity of the heavy quark.

• pion-pion final-state interactions

• elastic unitarity

$$\frac{1}{2i}\operatorname{disc} F_l(s) = \operatorname{Im} F_l(s) = F_l(s) \sin \delta_l^I(s) e^{-i\delta_l^I(s)}.$$
(3)

Watson's theorem: phase of $F_l(s)$ is just $\delta_l^I(s)$, the elastic $\pi\pi$ phase shift

• traditional solution to this homogeneous integral equation [Omnès, Nuovo Cim'1958]

$$F_l(s) = P_n(s)\Omega_l^I(s), \qquad \Omega_l^I(s) = \exp\left\{\frac{s}{\pi}\int_{4m_\pi^2}^\infty \frac{dx}{x}\frac{\delta_l^I(x)}{x-s}\right\}.$$
 (4)

 $P_n(s)$: polynomial; $\Omega_l^I(s)$: Omnès function

• inhomogeneous Omnès problem [A. V. Anisovich and H. Leutwyler,, PLB'1996]

$$\operatorname{Im} M_l(s) = \left[M_l(s) + \hat{M}_l(s) \right] \sin \delta_l^I(s) e^{-i\delta_l^I(s)} \,. \tag{5}$$

$$M_{l}(s) = \Omega_{l}^{I}(s) \left\{ P_{l}^{n-1}(s) + \frac{s^{n}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{dx}{x^{n}} \frac{\hat{M}_{l}(x) \sin \delta_{l}^{I}(x)}{|\Omega_{l}^{I}(x)|(x-s)} \right\},$$
(6)

- $\hat{M}_l(s)$: left-hand-cut contributions, here approximated by partial-wave projection of Z_b exchange only
- $P_l^{n-1}(s)$: subtraction polynomial, determined by matching to heavy meson chiral effective theory
- $\delta_l^I(x)$: $\pi\pi$ phase shift as input, isospin I=0, S-wave and D-wave
- number of subtractions to make the dispersive integrals converge
 - $\Omega_l^I(s) \sim s^{-k}$, if δ_l^I approaches $k\pi$ for large $s: \ \delta_{0,2}^0(s) \to \pi, \Omega_{0,2}^0(s) \sim 1/s$ - $\hat{M}_l(s) \sim s$ in the range 1 GeV² $\lesssim s \ll m_\Upsilon^2$

Three subtractions are sufficient.

- chiral representations $M_0^{\chi}(s),\,M_2^{\chi}(s)\sim s^2$, can be covered by the degree of the subtractions
- S- and D-wave amplitudes

$$M_{0}(s) = \Omega_{0}^{0}(s) \left\{ -\frac{2}{F_{\pi}^{2}} \left[c_{1} \left(s - 2m_{\pi}^{2} \right) + \frac{c_{2}}{2} \left(s + \mathbf{q}^{2} \left(1 - \frac{\sigma_{\pi}^{2}}{3} \right) \right) \right] + \sum_{i=1,2} C_{nm,i} \frac{s^{3}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{dx}{x^{3}} \frac{\bar{M}_{0i}(x) \sin \delta_{0}^{0}(x)}{|\Omega_{0}^{0}(x)|(x-s)|} \right\},$$

$$M_{2}(s) = \Omega_{2}^{0}(s) \left\{ \frac{2}{3F_{\pi}^{2}} c_{2} \mathbf{q}^{2} \sigma_{\pi}^{2} + \sum_{i=1,2} C_{nm,i} \frac{s^{3}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{dx}{x^{3}} \frac{\bar{M}_{2i}(x) \sin \delta_{2}^{0}(x)}{|\Omega_{2}^{0}(x)|(x-s)|} \right\}.$$
(7)

• fit with the $Z_{bi} \Upsilon(nS) \pi$ coupling strengths as free parameters

the Z_{b1} and Z_{b2} are strongly correlated in the fit, therefore, we use only one Z_b state.

	$\Upsilon(3S) \to \Upsilon(1S)\pi\pi$	$\Upsilon(2S) \to \Upsilon(1S) \pi \pi$	$\Upsilon(3S) \to \Upsilon(2S) \pi^0 \pi^0$
c_1	-0.025 ± 0.001	0.09 ± 0.05	-0.6 ± 0.1
c_2	0.026 ± 0.001	0.04 ± 0.08	0.2 ± 0.3
$C_{nm,1}$	0.145 ± 0.006	1.3 ± 1.4	3.7 ± 2.6
$\frac{\chi^2}{\mathrm{d.o.f}}$	$\frac{108.18}{87-3} = 1.29$	$\frac{101.68}{40-3} = 2.75$	$\frac{12.18}{11-3} = 1.52$

$\Upsilon(4S) \to \Upsilon(1S, 2S)\pi^+\pi^-$

• bottom meson loops may be important

 $m_{\Upsilon(4S)} - 2m_B = 0.021 \text{ GeV}, \quad \text{branching ratio: } \Upsilon(4S) \rightarrow B\bar{B} > 96\%$

• nonrelativistic effective field theory (NREFT)

- the velocity of the intermediate bottom meson:
$$\nu = \sqrt{|m_{\Upsilon(lS)} - m_{B^{(*)}} - m_{B^{(*)}}|/m_{B^{(*)}}}$$
- the propagator:
$$[l^2 - m_{B^{(*)}}^2]^{-1} \rightarrow [l^0 - \frac{l^2}{2m_{B^{(*)}}} - m_{B^{(*)}}]^{-1} \sim \nu^{-2}$$
- integral measure:
$$\int d^4l \sim \nu^5$$

• power counting of the loops

$$\begin{split} &\Upsilon B^{(*)} \bar{B}^{(*)} \colon P \text{ wave} \\ &\Upsilon B^{(*)} \bar{B}^{(*)} \times \Upsilon' B^{(*)} \bar{B}^{(*)} \colon \mathcal{O}(\nu^2) \\ &B^{(*)} B^{(*)} \pi \colon \langle \bar{H}_a^{\dagger} \sigma_i \partial^i \Phi_{ab} \bar{H}_b \rangle \sim q_\pi \\ &\text{Box: } \nu^5 \nu^2 q_\pi^2 / \nu^8 = q_\pi^2 / \nu. \end{split}$$

$$\Upsilon B^{(*)} \bar{B}^{(*)} \pi: \langle J \bar{H}_a^{\dagger} H_b^{\dagger} \rangle u_{ab}^0 \sim E_{\pi} \sim q_{\pi}$$

Triangle, I: $\nu^5 q_{\pi}^3 / (\nu^6) = q_{\pi}^3 / \nu$

 $B^{(*)}B^{(*)}\pi\pi$: PC = ++ pion pairs $\mathcal{O}(q_{\pi}^2)$ Triangle, $II: \nu^5 \nu^2 q_{\pi}^2 / \nu^6 = \nu q_{\pi}^2$

Box diagrams are dominant among the loops.

• two-channel unitarity conditions

$$\operatorname{Im} \mathbf{M}_0(s) = 2iT_0^{0*}(s)\Sigma(s) \left[\mathbf{M}_0(s) + \hat{\mathbf{M}}_0(s)\right],$$
(8)

$$\mathbf{M}_{0}(s) = \begin{pmatrix} M_{0}^{\pi}(s) \\ \frac{2}{\sqrt{3}}M_{0}^{K}(s) \end{pmatrix}, \quad \hat{\mathbf{M}}_{0}(s) = \begin{pmatrix} \hat{M}_{0}^{\pi}(s) \\ \frac{2}{\sqrt{3}}\hat{M}_{0}^{K}(s) \end{pmatrix}.$$
(9)

$$T_0^0(s) = \begin{pmatrix} \frac{\eta_0^0(s)e^{2i\delta_0^0(s)}-1}{2i\sigma_\pi(s)} & |g_0^0(s)|e^{i\psi_0^0(s)}\\ |g_0^0(s)|e^{i\psi_0^0(s)} & \frac{\eta_0^0(s)e^{2i\left(\psi_0^0(s)-\delta_0^0(s)\right)}-1}{2i\sigma_K(s)} \end{pmatrix}$$
(10)

$$\Sigma(s) = diag(\sigma_{\pi}(s)\theta(s - 4m_{\pi}^2), \sigma_K(s)\theta(s - 4m_K^2)).$$
(11)

-
$$\delta_0^0(s)$$
: $\pi\pi$ S-wave isoscalar phase shift

- $|g_0^0(s)|, \psi_0^0(s)$: modulus and phase of $\pi\pi \to K\bar{K}$ S-wave amplitude $\eta_0^0(s)$: inelasticity, = $\sqrt{1 4\sigma_\pi(s)\sigma_K(s)|g_0^0(s)|^2\theta(s 4m_K^2)}$

$$\mathbf{M}_{0}(s) = \Omega(s) \left\{ \mathbf{M}_{0}^{\chi}(s) + \frac{s^{3}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{dx}{x^{3}} \frac{\Omega^{-1}(x)T(x)\Sigma(x)\hat{\mathbf{M}}_{0}(x)}{x-s} \right\},$$
(12)

$$\mathbf{M}_{0}^{\chi}(s) = \left(M_{0}^{\chi,\pi}(s), 2/\sqrt{3} M_{0}^{\chi,K}(s)\right)^{T}.$$
(13)

Fit I (green dash-dot-dotted): only contact terms Fit II (red dashed): contact terms + Z_b -exchange Fit III (blue dot-dashed): contact terms + box diagra Fit IV (black solid): contact terms + Z_b -exchange + box diagrams

• $f_0(980)$ causes a dip around 1 GeV

- [D. Y. Chen, X. Liu and X. Q. Li, EPJC'2011]
- Z_b -exchange and box terms can hardly be distinguished

 $\Upsilon(4S) \to \Upsilon(2S)\pi^+\pi^-$

Fit I (green dash-dot-dotted): only contact terms Fit II (red dashed): contact terms + Z_b -exchange Fit III (blue dot-dashed): contact terms + box diagra Fit IV (black solid): contact terms + Z_b -exchange + box diagrams

 including only contact terms roughly reproduces a two-hump structure, while it produces a 0 inside the physical region

Figure 1: Theoretical predictions of the helicity angular distributions for the decays $\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$ (left) and $\Upsilon(4S) \to \Upsilon(2S)\pi^+\pi^-$ (right).

Angular distribution distinguishes different mechanisms in $\Upsilon(4S) \to \Upsilon(2S)\pi\pi$.

Conclusions

- Dispersion theory can consider strong pion-pion final-state interaction in a model-independent way
- Z_b states can naturally explain the double-peak $\pi\pi$ mass spectrum in $\Upsilon(3S) \to \Upsilon(1S)\pi\pi$ decay
- A dip around 1 GeV caused by the opening of the $K\bar{K}$ in the $\pi\pi$ mass spectrum of $\Upsilon(4S) \to \Upsilon(1S)\pi\pi$ decay

Thanks for your patience