Recent Results on Light Hadron Physics at BESIII

Guofa XU IHEP (On behalf of the BESIII Collaboration)

2018 手征有效场论研讨会

OUTLINE

> Introduction

$\succ \eta'$ meson decays

- Hadonic decays: $\eta' \rightarrow \pi^{+(0)}\pi^{-(0)}\pi^0$, $\eta' \rightarrow \pi^{+(0)}\pi^{-(0)}\eta$
- Radiative decays: $\eta' \rightarrow \gamma \pi^+ \pi^-$, $\eta' \rightarrow \gamma \gamma \pi^0$

$> a_0^0(980) - f_0(980)$ mixing

- $\blacklozenge a_0^0(980) \rightarrow f_0(980): J/\psi \rightarrow \varphi a_0(980) \rightarrow \varphi \eta \pi^0$
- $\blacklozenge f_0(980) \to a_0^0(980): \chi_{c1} \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-$
- $> \eta(1440)/\eta(1405)/\eta(1475)$
- **≻** X(18**)

> Summary

Beijing Electron Positron Collider II (BEPC II)

Storage ring ~240m

Linac ~200m

BESIII Detector

sta

2018/8/30 W. Gradl — 手征有效场论研究

2004: started BEPCII/BESIII construction

- ✓ Double rings
- ✓ Beam energy: 1-2.3 GeV
- ✓ Designed luminosity: 1×10³³ cm⁻²s⁻¹
- 2008: test run 2009 – today: BESIII physics runs

BESIII Detector

η, η' from J/ ψ decays

High production rate of light mesons in J/ψ decays
η/η' from J/ψ radiative decays
7.2 × 10⁶ η'
2.4 × 10⁶ η
η/η' from J/ψ hadronic decays (e.g. J/ψ→φη)
3× 10⁵ η'
5× 10⁵ η

η, η' :a rich physics field

- test the predictions of ChPT
- probe physics beyond the SM
- study transition form factors
- test fundamental symmetries

η decay mode	physics highlight	$\eta' \mod$	physics highlight
$\eta ightarrow \pi^0 2 \gamma$	ChPT	$\eta' ightarrow \pi\pi$	CPV
$\eta ightarrow \gamma B$	leptophobic dark boson	$\eta' ightarrow 2\gamma$	chiral anomaly
$\eta \rightarrow 3\pi 0$	$m_u - m_d$	$\eta' o \gamma \pi \pi$	box anomaly, form factor
$\eta ightarrow \pi^+\pi^-\pi^0$	$m_u - m_d$, CV	$\eta' ightarrow \pi^+ \pi^- \pi^0$	$m_u - m_d$, CV
$\eta \rightarrow 3\gamma$	CPV	$\eta' \rightarrow \mu^+ \mu^- \pi^0, e^+ e^- \pi^0$	CV

Recent results on η/η' decays at BESIII

• Hadronic decays > $\eta' \rightarrow \pi^+\pi^-\pi^0$, $\pi^0\pi^0\pi^0$ > $\eta' \rightarrow \pi^+\pi^-\eta$, $\pi^0\pi^0\eta$ • Radiative decays > $\eta' \rightarrow \gamma\pi^+\pi^-$ > $\eta' \rightarrow \gamma\gamma\pi^0$

Amplitude Analysis of $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \pi^0$

- ♦ η' → πππ are isospin-violating processes, dominated by strong interaction [Nucl. Phys. B460, 127(1996)]
- light quark mass difference $(m_d m_u)/m_s$ can be extracted [PRD 19, 2188(1979)]

$$r_{\pm} = \frac{B(\eta' \rightarrow \pi^{+}\pi^{-}\pi^{0})}{B(\eta' \rightarrow \pi^{+}\pi^{-}\eta)}$$

$$r_{0} = \frac{B(\eta' \rightarrow \pi^{0}\pi^{0}\pi^{0})}{B(\eta' \rightarrow \pi^{0}\pi^{0}\eta)}$$

$$Using ChPT, large P-wave contribution of $\eta' \rightarrow \rho^{\pm}\pi^{\mp}$ is predicted [Eur. Phys. J. A 26, 383(2005)]$$

Amplitude Analysis of $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \pi^0$

Amplitude Analysis of $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \pi^0$

Described by three components: P wave $(\rho^{\pm}\pi^{\mp})$, resonant S wave $(\sigma\pi^0)$, phase-space S wave $(\pi\pi\pi)$ Each component > 24σ $B(\eta' \rightarrow \pi^+\pi^-\pi^0)$ $= (35.91 \pm 0.54 \pm 1.74) \times 10^{-4}$ $B(\eta' \to \pi^0 \pi^0 \pi^0)$ $= (35.22 \pm 0.82 \pm 2.54) \times 10^{-4}$ $B(\eta' \rightarrow \rho^{\pm} \pi^{\mp})$ $= (7.44 \pm 0.06 \pm 1.26 \pm 1.84)$ $\times 10^{-4}$ $B(\eta' \rightarrow \pi^+\pi^-\pi^0)_{\rm s}$ $= (37.63 \pm 0.77 \pm 2.22 \pm 4.48)$ $\times 10^{-4}$ **Obtained decay width ratios:** $r_{+} = (8.77 \pm 1.19) \times 10^{-3}$ $r_0 = (15.86 \pm 1.33) \times 10^{-3}$

Matrix Elements for $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \eta$

- Remains a subject of effective ChPT
- explored by CLEO, VES, GAMS Collaboration but with limited statistics
- A cusp due to $\pi^+\pi^-$ mass threshold for the Dalitz plot of $\eta' \to \pi^0\pi^0\eta$

♦ For the charged decay mode

 $X = \frac{\sqrt{3}(T_{\pi^+} - T_{\pi^-})}{Q}, \qquad Y = \frac{m_{\eta} + 2m_{\pi}}{m_{\pi}} \frac{T_{\eta}}{Q} - 1.$ $T_{\pi} \text{ and } T_{\eta} \text{ are the kinetic energies of } \pi \text{ and } \eta \text{ in the } \eta' \text{ rest frame, } Q = m_{\eta'} - m_{\eta} - 2m_{\pi}$ • For the neutral decay mode $X = \frac{\sqrt{3}|T_{\pi_1^0} - T_{\pi_2^0}|}{O}.$ general representation $|M(X,Y)|^2 = N(1 + aY + bY^2 + cX + dX^2 + \cdots).$ ◆ linear representation $|M(X, Y)|^2 = N(|1 + \alpha Y|^2 + cX + dX^2 + \cdots),$ Here, *a*, *b*, *c*, *d* are free parameters

 α is a complex number, $a=2\operatorname{Re}(\alpha)$, $b=\operatorname{Re}(\alpha)^2 + \operatorname{Im}(\alpha)^2$

2018/8/30

Matrix Elements for $\eta' \rightarrow \pi^+ \pi^- \eta$

		$\eta' o \eta \pi^+ \pi^-$				
Parameter	EFT [5]	Large N_C [7]	RChT [7]	VES [10]	This work	
a	-0.116(11)	-0.098(48)	(fixed)	-0.127(18)	-0.056(4)(2)	
b	-0.042(34)	-0.050(1)	-0.033(1)	-0.106(32)	-0.049(6)(6)	
С				+0.015(18)	0.0027(24)(18)	
d	+0.010(19)	-0.092(8)	-0.072(1)	-0.082(19)	-0.063(4)(3)	
$\Re(\alpha)$	[5]Eur. Phys	J.A 26, 383 (2005).	-0.072(14)	-0.034(2)(2)	
$\Im(\alpha)$	[7] THEP 05	094(2011)		0.000(100)	0.000(19)(1)	
с		,074(2011)	(2005)	+0.020(19)	0.0027(24)(15)	
d	[10] Phys. L	ett. B 651, 22	(2007).	-0.066(34)	-0.053(4)(4)	

Matrix Elements for $\eta' \rightarrow \pi^0 \pi^0 \eta$

		$\eta' ightarrow \eta \pi^0 \pi^0$	
Parameter	EFT [5]	GAMS-4π [12]	This work
a	-0.127(9)	-0.067(16)	-0.087(9)(6)
b	-0.049(36)	-0.064(29)	-0.073(14)(5)
С			
d	+0.011(21)	-0.067(20)	-0.074(9)(4)
$\Re(\alpha)_{[5]Eur.]}$	Phys. J. A ⁻ 26, 383(20	(05) -0.042(8)	-0.054(4)(1)
$\Im(\alpha)$ [12] Phy	s. At. Nucl.72, 231 (0.000(70)	0.000(38)(2)
C [III]		••••	
d		-0.054(19)	-0.061(9)(5)

Matrix Elements for $\eta' \rightarrow \pi^0 \pi^0 \eta$

Search for cusp effect

• FSI: A cusp effect (more than 8%) on $\pi^0 \pi^0$ mass spectrum below the $\pi^+ \pi^-$ mass threshold [EPJC62, 511 (2009)]

No evidence of a cusp effect with current statistics

手征有效场论研讨会--吉林大学

Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ Decay Dynamics

- In VMD model, this process is dominated by $\eta' \rightarrow \gamma \rho(770)$ The discrepancy attributed to the Wess-Zumino-Witten anomaly in the **ChPT**, known as the box anomaly [PLB37, 95 (1971), NPB223, 422 (1983)] Recently a model-independent approach based on ChPT are proposed: $A \propto P(s) \cdot F_V(s)$ [PLB 707, 184 (2012)] Studied by several experiments , but no consistent picture due to limited statistics
 - ρ mass shift or not ?
 - box anomaly or not ?

Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ Decay Dynamics

PRL 120, 242003 (2018)

Model dependent fit

Fit with $\rho(770) - \omega - \rho(1450)$ Fit with $\rho(770) - \omega$ -box anomaly 30000 30000 Data a) (b) Fotal Fit 25000 Total Fit 25000 Events / (5 MeV/c²) 0000 00001 0000 00001 ω (× 20) (× 20) box (× 20) o' (× 20) ω-box Int. (× 20) ω-ρ' Int. (× 20) o⁰-ω Int. o⁰-o Int. o⁰-box Int. ρ⁰-ρ' Int. sideband n' sideband BESI −B€SIII pull bull 0.9 0.8 0.8 0.40.6 0. 0.9 $M(\pi^+\pi^-)$ (GeV/c²) M(π⁺π⁻) (GeV/c²)

Besides the $\rho(770)$, the ω contribution is needed

 \bullet ρ(770)-ω cannot describe data well

Extra contribution of box-anomaly or $\rho(1450)$, or both of them is necessary

Doubly radiative decay $\eta' \rightarrow \gamma \gamma \pi^0$

• The inclusive $\eta' \to \gamma \gamma \pi^0$ includes the vector mesons ρ / ω and the non-resonant contribution

Doubly radiative decay $\eta' \rightarrow \gamma \gamma \pi^0$

This measurement: $B(\eta' \to \gamma \gamma \pi^0)_{inc} = (3.20 \pm 0.07 \pm 0.23) \times 10^{-3}$ $B(\eta' \to \gamma \omega) = (23.7 \pm 1.4 \pm 1.8) \times 10^{-4}$ $B(\eta' \to \gamma \gamma \pi^0)_{NR} = (6.16 \pm 0.64 \pm 0.67) \times 10^{-4}$ PDG: $B(\eta' \to \gamma \gamma \pi^0) < 8.0 \times 10^{-4}$ Linear σ model and VMD: $B(\eta' \to \gamma \gamma \pi^0) \sim 6.0 \times 10^{-3}$

$a_0^0(980)-f_0(980)$ mixing

Meson	I ^G (J ^{PC})	Mass(MeV)	Width(MeV)	Decay
a ₀ (980)	1-(0++)	980 ± 20	50~100	ηπ, ΚΚ
f ₀ (980)	0+(0++)	990 ± 10	<mark>10</mark> ~100	<i>ππ</i> , <i>KK</i>

- ♦ In theory, a₀⁰(980) and f₀(980) are explained as qq̄ mesons, KK̄ molecules, tetraquarks, qq̄g hybrids
- ◆ In 1970s, the mixing mechanism was firstly proposed [PLB 88, 367 (1979)]
 m(K⁺K⁻) ≈ 987MeV m(K⁰K⁰) ≈ 995MeV m(K⁰K⁰) - m(K⁺K⁻) ≈ 8MeV

• A narrow peak of about 8MeV is predicted

$a_0^0(980)$ - $f_0(980)$ mixing

• Theorist proposed to directly measure $f_0(980) \leftrightarrow a_0^0(980)$ mixing via J/ ψ $\rightarrow \phi f_0(980) \rightarrow \phi a_0^0(980) \rightarrow \phi \eta \pi^0$ and $\chi_{c1} \rightarrow \pi^0 a_0^0(980) \rightarrow \pi^0 f_0(980)$ $\rightarrow \pi^0 \pi^+ \pi^-$ [Wu, Zhao, Zou, PRD 75 114012(2007), PRD 78 074017(2008)]

$$\xi_{fa} = \frac{\mathcal{B}(J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0)}{\mathcal{B}(J/\psi \to \phi f_0(980) \to \phi \pi \pi)}$$

$$\xi_{af} = \frac{\mathcal{B}(\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-)}{\mathcal{B}(\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 \pi^0 \eta)}$$

♦ Mixing intensity is sensitive to couplings of g_{a0K+K}- and g_{f0K+K} ♦ Measured at BESIII based on 225M J/ψ and 108M ψ'[PRD83.032003(2011)] significance <5σ ξ_{af} < 1.0%@90%C.L. ξ_{fa} < 1.1%@90%C.L.

$f_0(980) \rightarrow a_0^0(980)$ mixing

2018/8/30

手征有效场论研讨会--吉林大学

$a_0^0(980) \rightarrow f_0(980)$ mixing

 $\chi_{c1} \rightarrow \pi^0 a_0^0(980) \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$ ^NO 3.5 (GeV/c 5.5σ Very narrow peak of $f_0(980)$ Events **EM contribution too** weak ,can be negligible M₁₊₁ (GeV/c²) M_{***} (GeV/c²) **Interference is negligible** Channel $a_0^0(980) \to f_0(980)$ Significance of $a_0^0(980)$ \rightarrow f₀(980) is 5.5 σ $\mathcal{B}(\text{mixing}) \ \overline{(10^{-6})}$ $0.35 \pm 0.06 \pm 0.03 \pm 0.06$ $\mathcal{B}(EM)$ (10⁻⁶) $\mathcal{B}(\text{total}) \ (10^{-6})$ ξ (%) $0.40 \pm 0.07 \pm 0.14 \pm 0.07$

1802.00583v3 (accepted by PRL)

>η(1405) and η(1475) observed in different decay modes

- $\checkmark \pi^- p$: prd40(1989)693, plb516(2001)264
- ✓ Radiative J/ψ decay: PRL65(1990)2507, PRD46(1992)1951
- ✓ pp̄ annihilation at rest: PLB361(1995)187, PLB400(1997)226, PLB462(1999)453,
 PLB545(2002)261

Pseudoscalar (0⁻⁺)--η(1405)/η(1475)

The Structure of $\eta(1440)$

Experiment

✓ η (1440) split to η (1405) and η (1475) (from PDG04)

✓ η (1405)→ $\eta\pi\pi$, or through a₀(980) π (or direct) to KK π

√η(1475)→K*(892)K

≻Quark-model

- η (1295): the first radial excitation of the η '
- $\eta(1475)$: the first radial excitation of the η
- η<mark>(1405)</mark> ?

Phys. Rev. D87, 014023(2013)

- $\eta(1405)$ and $\eta(1475)$ are the same state with a mass shift in different modes
- Γγφ ≃ 3.8:1

Pseudoscalar (0⁻⁺)--η(1405)/η(1475) √η(1405)→γρ η(1475)→γφ

Comparison with other experiments					
Decay mode	Mass (MeV/ c^2)	Width (MeV/ c^2)	$B(J/\psi \to \gamma X)B(X \to \gamma V)$ $(\times 10^{-4})$	Experiment	
$f_1(1285) \rightarrow \gamma \rho^0$	$\begin{array}{c} 1281.9 \pm 0.6 \\ 1271 \pm 7 \\ 1276.1 \pm 8.1 \pm 8.0 \end{array}$	$\begin{array}{c} 24.0 \pm 1.2 \\ 31 \pm 14 \\ 40.0 \pm 8.6 \pm 9.3 \end{array}$	$\begin{array}{c} 0.34 \pm 0.09 \\ 0.25 \pm 0.07 \pm 0.03 \\ 0.38 \pm 0.09 \pm 0.06 \end{array}$	PDG [1] MarkIII [7] BESII	
$\eta(1440) \to \gamma \rho^0$	1400-1470 1432 ± 8 $1424 \pm 10 \pm 11$	$50-8090 \pm 26101.0 \pm 8.8 \pm 8.8$	$\begin{array}{c} 0.64 \pm 0.12 \pm 0.07 \\ 0.64 \pm 0.12 \pm 0.07 \\ 1.07 \pm 0.17 \pm 0.11 \end{array}$	PDG [1] MarkIII [7] BESII	
$\eta(1440) \rightarrow \gamma \phi$			< 0.82 (95% C.L.)	BESII	

Fig. 2. The $\gamma \rho$ invariant mass distribution. The insert shows the full mass scale where the η (958) is clearly observed.

Table 2

Pseudoscalar (0⁻⁺)--η(1405)/η(1475)

√η**(1475)**→γφ

Phys. Rev. D97, 051101(R) (2018)

Γγρ : Γγφ ≃ 11.1±3.5 7.5±2.5

	Resonance	Mass (MeV/c ²)	Γ (MeV/c²)	B.F.(×10⁻⁶)
Destructive	f ₁ (1285)	PDG	PDG	0.30±0.12±0.17
interference	η(1405/1475)	$1479 \pm 11 \pm 21$	$133 \pm 35 \pm 20$	11.8±2.2±1.9
	X(1835)	1812±59±42	161±47±24	9.0±2.6±2.2
Constructive	f ₁ (1285)	PDG	PDG	0.29±0.12±0.17
interference	η(1405/1475)	1479±11±16	132±36±31	7.9±1.3±1.9
	X(1835)	1813±61±45	$160 \pm 81 \pm 43$	$1.6 \pm 0.5 \pm 0.3$

BES2: $J/\psi \rightarrow (\omega, \phi) K \overline{K} \pi$

TABLE V. The mass, width, and branching fractions of J/ψ decays into $\{\omega, \phi\}X(1440)$.

$J/\psi \rightarrow \omega X(1440)$	$J/\psi \rightarrow \omega X(1440)$
$(X \to K_S^0 K^+ \pi^- + \text{c.c.})$	$(X \rightarrow K^+ K^- \pi^0)$
$M = 1437.6 \pm 3.2 \text{ MeV}/c^2$	$M = 1445.9 \pm 5.7 \text{ MeV}/c^2$
$\Gamma = 48.9 \pm 9.0 \text{ MeV}/c^2$	$\Gamma = 34.2 \pm 18.5 \text{ MeV}/c^2$
$B(J/\psi \rightarrow \omega X(1440) \rightarrow \omega K_S^0 K^+ \pi^- + \text{c.c.}) = (4.8)$	$6 \pm 0.69 \pm 0.81) \times 10^{-4}$
$B(J/\psi \rightarrow \omega X(1440) \rightarrow \omega K^{+} K^{-} \pi^{0}) = (1.92 \pm 0.5)$	$57 \pm 0.38) \times 10^{-4}$
$B(J/\psi \to \phi X(1440) \to \phi K_S^0 K^+ \pi^- + \text{c.c.}) < 1.93$	$\times 10^{-5}$ (90% C.L.)
$B(J/\psi \rightarrow \phi X(1440) \rightarrow \phi K^{+} K^{-} \pi^{0}) < 1.71 \times 10^{-1}$	⁻⁵ (90% C.L.)

M. Ablikim et al, Phys. Rev. D77, 032005(2008)

BESIII: J/ ψ →ωη $\pi\pi$

TABLE I. Summary of measurements of the mass, width, and the product branching fraction of $\mathcal{B}(J/\psi \to \omega X) \times$ $\mathcal{B}(X \to a_0^{\pm}(980)\pi^{\mp}) \times \mathcal{B}(a_0^{\pm}(980) \to \eta\pi^{\pm})$ where X represents $f_1(1285)$, $\eta(1405)$ and X(1870). Here the first errors are statistical and the second ones are systematic.

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(10^{-4})$
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1^{+2.0}_{-1.5}$	$1.25 \pm 0.10^{+0.19}_{-0.20}$
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50 \pm 0.26^{+0.72}_{-0.36}$

FIG. 4 (color online). Results of the fit to the $M(\eta \pi^+ \pi^-)$ mass distribution for events with either the $\eta \pi^+$ or $\eta \pi^-$ in the $a_0(980)$ mass window. The dotted curve shows the contribution of non- ω and/or non- $a_0(980)$ background, the dashed line also includes the contribution from $J/\psi \rightarrow b_1(1235)a_0(980)$, and the dot-dashed curve indicates the total background with the non-resonant $J/\psi \rightarrow \omega a_0^{\pm}(980)\pi^{\mp}$ included. $\chi^2/d.o.f.$ is 1.27 for this fit.

M. Ablikim et al, Phys. Rev. Lett. 107, 182001(2011)

Decay mode	Branching fraction \mathcal{B}
$J/\psi \to \eta Y(2175), \ Y(2175) \to \phi f_0(980), \ f_0(980) \to \pi^+\pi^-$	$(1.20 \pm 0.14 \pm 0.37) \times 10^{-4}$
$J/\psi \to \phi f_1(1285), \ f_1(1285) \to \eta \pi^+ \pi^-$	$(1.20 \pm 0.06 \pm 0.14) \times 10^{-4}$
$J/\psi \rightarrow \phi \eta(1405), \ \eta(1405) \rightarrow \eta \pi^+ \pi^-$	$(2.01 \pm 0.58 \pm 0.82)(< 4.45) \times 10^{-5}$
$J/\psi \to \phi X(1835), X(1835) \to \eta \pi^+ \pi^-$	$< 2.80 \times 10^{-4}$
$J/\psi \to \phi X(1870), \ X(1870) \to \eta \pi^+ \pi^-$	$< 6.13 \times 10^{-5}$

The isospin violated decay $\eta(1405) \rightarrow f_0(980)\pi^0$ is observed for the first time with a significance >10 σ .

Resonance	$M({ m MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	Branching ratios
$\frac{\eta(1405)(\pi^+\pi^-\pi^0)}{\eta(1405)(\pi^0\pi^0\pi^0)}$	1409.0 ± 1.7 1407.0 ± 3.5	48.3 ± 5.2 55.0 ± 11.0	$\begin{array}{l} (1.50 \pm 0.11 \pm 0.11) \times 10^{-5} \\ (7.10 \pm 0.82 \pm 0.72) \times 10^{-6} \end{array}$

K(K)

f₀(980)

K(K)

data !

Triangle Singularity (TS)

one n(1440) is enough to describe the experimental

J.J.Wu et al, PRL 108, 081803(2012)

Measured results of $\eta(1440)$ at **BES2/BESIII**

BES2 BESIII

	ηππ	$K\overline{K}\pi$	3π	γ V
γ	η(1405) (2.6±0.7)·10⁻⁴	η (1440)	η(1405) 3π (1.50±0.11±0.11)·10 ⁻⁵ 3π ⁰ (7.10±0.82±0.72)·10 ⁻⁶	η(1405)→γρ (1.07±0.17±0.11)·10 ⁻⁴ η(1475)→γφ (7.9±1.3±1.9/ 11.8±2.2±1.9)·10 ⁻⁶
ω	η(1405) (1.89±0.21± ^{0.21} _{0.23})·10 ⁻ 4	η(1440) K _s Kπ: (4.86±0.69±0.81)·10 ⁻⁴ K ⁺ K ⁻ π ⁰ : (1.92±0.57±0.38)·10 ⁻⁴		
¢	η(1405) (2.01±0.58±0.82)·10 ⁻ ⁵ (<4.45·10 ⁻⁵ @90%CL)	η(1440) K _s Kπ <1.93·10 ⁻⁵ @90%CL K ⁺ K ⁻ π ⁰ <1.71·10 ⁻⁵ @90%CL		
ρ				

Status of X(18??) at BESIII

- $X(p\overline{p})$: $J^{P} = 0^{-}$, $J/\psi \rightarrow \gamma p\overline{p}$,
- X(1835): $J^{P} = 0^{-}$, $J/\psi \rightarrow \gamma \pi^{+} \pi^{-} \eta'$, PRL106, 072002
- X(1840): J^P unknown, $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$, PRD88,091502
- X(1870): J^P unknown, J/ψ→ωηπ⁺π⁻, PRL107, 182001
- X(1810): $J^{P} = 0^{+}$, $J/\psi \rightarrow \gamma \omega \phi$,

PRL108,112003 PRL106, 072002 PRD88,091502 PRL107, 182001 PRD 87, 032008

X(18??) near proton-antiproton threshold :

- X(1840) is in agreement with X(1835) and X($p\overline{p}$), while its width is significantly different
- Are they the same particles?
- More studies are needed

$X(p\overline{p})/X(1860)$ in $J/\psi \rightarrow \gamma p\overline{p}$

- Strong enhancement first observed at BESII [PRL 91,022001(2003)] and confirmed by CLEO-c [PRD82,092002(2012)];
- PWA was firstly performed at BESIII;
- Significance of the X(pp̄) component > 30σ,
 >5σ for the other components ;
- The 0⁻⁺ assignment is better that other J^{PC} ;
- $M=1832\pm_{5}^{19}(stat)\pm_{17}^{18}(syst)\pm_{19}(mode)MeV/c^2$;
- **Γ**<76MeV/c² (90% C.L.);

PRL 108,112003(2012) 700 X(pp) 600 0++PS $Events/(0.005GeV/c^2)$ $f_0(2100)$ 500 $f_{2}(1910)$ 400 300 200 100 0 0.0 0.2 0.3 0.1

 $M_{p\overline{p}}-2m_p(GeV/c^2)$

No similar structure was observed in J/ $\psi
ightarrow \omega p\overline{p}$ or J/ $\psi
ightarrow \varphi p\overline{p}$;

arXiv:1512.08197

手征有效场论研讨会--吉林大学

Confirm X(1835) in J/ $\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

Resonance M(Mev/c) $\Gamma(\text{MeV}/c^2)$	N _{event}	
$f_1(1510)$ 1522.7 ± 5.	$0 48 \pm 11$	230 ± 37	>5.7σ
X(1835) 1836.5 ± 3.	$0 190.1 \pm 9.0$	4265 ± 131	>20σ
X(2120) 2122.4 ± 6	$7 83 \pm 16$	647 ± 103	>7.2σ
X(2370) 2376.3 ± 8	$7 83 \pm 17$	565 ± 105	>6.4σ

- X(1835) was first observed at BES, and then confirmed at BESII [PRL95,262001(2005)];
- the angular distribution of the radiative photon is consistent with expectations for pseudoscalar;
- Many interpretation: pp bound state? Glueballs? Radial excitation of the η' meson?,...
- Needed higher statistic

手征有效场论研讨会--吉林大学

$\eta' \pi^+ \pi^-$ line shape near the pp mass threshold

- A significant distortion of the $\eta' \pi^+ \pi^-$ line shape near the $p\bar{p}$ mass threshold is observed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - > Simple Breit-Wigner function fails in describing the line shape near the $p\bar{p}$ mass threshold
- Two models have been used
 - > MODEL I: threshold structure due to the opening of the $p\bar{p}$ decay mode
 - Using the Flatté formula
 - Strong X(1835) $\rightarrow p\overline{p}$ coupling, with significance larger than 7σ
 - $M_{\text{pole}} = 1909.5^{+15.9}_{-15.9}^{+9.4}_{-27.5} \text{ MeV}/c^2$
 - $\Gamma_{\text{pole}} = 273.5 \stackrel{+21.4}{_{-21.4}} \stackrel{+6.1}{_{-64.0}} \text{MeV}/c^2$
 - MODEL II: interference between two resonances
 - Using coherent sum of two Breit-Wigner amplitudes
 - A narrow resonance below the $p\overline{p}$ mass threshold, with significance larger than 7σ
 - $M = 1870.2^{+2.2}_{-2.3} \frac{2.3}{-0.7} MeV/c^2$
 - $\Gamma = 13.0 + 7.1 + 2.1 3.8 \text{ MeV}/c^2$
- Both models fit the data well with almost equally good quality
 - Cannot distinguish them with current data
 - Suggest the existence of a state, either a broad state with strong couplings to pp, or a narrow state just below the pp mass threshold
 - > Support the existence of a $p\overline{p}$ molecule-like state or bound state

PRL 117, 042002 (2016)

X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ provides a clear environment

BESIII: PRL115, 091803(2015)

- $K^{0}_{s}K^{0}_{s}\eta$ and $\pi^{0}K^{0}_{s}K^{0}_{s}\eta$ bkgs are forbidden by exchange symmetry and CP conservation
- $1.3 \times 10^9 \text{ J}/\psi$ events
- (a) Structure around 1.85 GeV/ c^2
- (b) Strong enhancement near the $K^{0}{}_{s}K^{0}{}_{s}$ threshold interpreted as the $f_0(980)$
- (c) Strong correlation between the • $f_0(980)$ and the structure near 1.85 GeV/c²
- (d) $M(K^0_{s}K^0_{s}) < 1.1 \text{ GeV}/c^2 \text{ e}$ the structure near 1.85 GeV/c^2 became more pronounced

PWA of events with $M(K_{S}^{0}K_{S}^{0}) \le 1.1 \text{ GeV}/c^{2} \text{ and }$ $M(K_{S}^{0}K_{S}^{0}\eta) \le 2.8 \text{ GeV}/c^{2}$

2018/8/30

手征有效场论研讨会--吉林大

X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$ BESIII: PRL115,091803

Final fit results: the data can be best described with three components: $X(1835) \rightarrow f_0(980) \eta$, $X(1560) \rightarrow f_0(980) \eta$, and a non-resonant $f_0(1500) \eta$ component

✓ Mass/Width consistent with the X(1835) in

 $J/\psi \rightarrow \gamma \eta' \pi \pi$

Mass/spin consistent with those of the X($p\bar{p}$)

 \checkmark Width is larger than the width of the X($par{p}$)

2018/8/30

X(1840) in J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- A structure at 1.84GeV/c² is observed in the mass spectrum 3(π⁺π⁻) with a significance of 7.6σ;
- M=1842.2±4.2^{+7.1}-2.6 MeV/c²;
 Γ=83±14±11 MeV/c²;

 $B(J/\psi \to \gamma X(1840)) \times B(X(1840) \to 3(\pi^+\pi^-)) = (2.44 \pm 0.36^{+0.60}_{-0.74}) \times 10^{-5}$

- ✓ The mass is consistent with that of X(1835), but the width is significantly different from either of them, and much smaller than $\Gamma_{X(1835)} = 190.1 \pm 9.0^{+38} \cdot _{.36} \text{ MeV/c}^2$;
- ✓ We cannot determine whether X(1840) is a new state a new decay modes of existing X(1835)?

X(1870) in J/ψ→ωηπ⁺π⁻

- First observation of $J/\psi \rightarrow \omega X(1870)$ and $X(1870) \rightarrow a_0 (980) \pm \pi^{\mp}$ with the significance 7.2 σ ;
- M=1877.3 \pm 6.3(stat) \pm ^{3.4}_{7.4}(syst) MeV/c²
- $\Gamma = 57 \pm 12(\text{stat}) \pm \frac{19}{4}(\text{syst}) \text{ MeV/c}^2;$
- f₁(1285) and η(1405) are also observed swith significances >10σ;
- the product branching fractions for X(1870), f₁(1285) and η(1405) are measured for the first time.

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(10^{-4})$
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1^{+2.0}_{-1.5}$	$1.25 \pm 0.10^{+0.19}_{-0.20}$
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21 \substack{+0.21 \\ -0.23}$
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50\pm0.26^{+0.72}_{-0.36}$

Whether the resonant structure of X(1870) is due to the X(1835), the $\eta_2(1870)$, an interference of both, or a new resonance still needs further study!

X(1810) in PWA of J/ $\psi \rightarrow \gamma \omega \phi$

- $J/\psi \rightarrow \gamma \omega \phi$ is Double OZI suppressed;
- The X(1810) is first observed by PWA at BESII [PRL 96, 162002 (2006)];
- Observed and confirmed at BESIII with the significance >30σ,;
- the J^{PC} of the X(1810) is 0⁺⁺;
- The enhancement is not compatible with either the X(1835) or the X(pp) due to the different masses and spin-parity.

Resonance	J^{PC}	$M({\rm MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	Events	ΔS	Δndf	Significance
X(1810)	0++	1795 ± 7	95 ± 10	1319 ± 52	783	4	$>30\sigma$
$f_2(1950)$	2^{++}	1944	472	665 ± 40	211	2	20.4σ
$f_0(2020)$	0^{++}	1992	442	715 ± 45	100	2	13.9σ
$\eta(2225)$	0^{-+}	2226	185	70 ± 30	23	2	6.4σ
Coherent nonresonant component	0^+			319 ± 24	45	2	9.1 <i>o</i>

手征有效场论研讨会--吉林大学

 $J/\psi \rightarrow \gamma \omega \phi PRD$ 87,032008 >30σ

X states near proton-antiproton threshold More studies are needed

Summary

> $J/\psi(\psi')$ decay is a unique place to study light mesons

> BESIII: 1.3 billion + 4.6 billion + 4 billion
J/ψ events

A sample of 4.6 billion J/ψ events was taken in 2018

So large data sample allows to study light mesons with the unprecedented statistics

More interesting results are expected