Tomography by neutrino pair beam

Hisashi Okui,

Takehiko Asaka, Minoru Tanaka ${ }^{\text {A }}$, Motohiko Yoshimura ${ }^{B}$ Niigata Univ, ${ }^{\text {AOs }}$ saka Univ, ${ }^{\mathrm{B}}$ Okayama Univ

Introduction

Development of the neutrino physics

Our understanding of neutrino has been improved greatly since the end of the last century.

Especially, the observation of flavor oscillations of neutrino has shown the presence of new physics beyond the standard model.

The Nobel Prize in Physics 2015

- Takaaki Kajita (SK)
- Arthur B. McDonald (SNO)

For the discovery of neutrino oscillation, which shows the neutrinos have mass.

- This is inconsistent with the prediction of the Standard Model that predicts massless neutrinos.
- This is a clear signature of new physics beyond the Standard Model.

Neutrino Oscillation Parameter

From neutrino oscillation experiments

$s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}$	$P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & e^{i \alpha} & 0 \\ 0 & 0 & e^{i \beta}\end{array}\right)$
CP phase	Majorana phase

Thanks to the remarkable efforts of various experiments $\theta_{i j} \quad \Delta m_{i j}$ has been measured accurately.
So, we consider seriously the application of neutrino physics to various fields of basic science.

* Absolute value of neutrino mass, CP phase, Majorana phase, mass ordering have not yet determined.

The idea of Neutrino Tomography

Imaging of the Earth's interior structure using the neutrino.

Neutrino can easily transmit the Earth due to the weakness of its interaction.

Neutrino Tomography

3 different methods of Neutrino Tomography

1. Neutrino Absorption Tomography

- Using the absorption of neutrino by matter.
- Same mechanism to the X-ray computed tomography.
- This method needs the high energy neutrinos ($\mathrm{E}_{\mathrm{v}}>10 \mathrm{TeV}$).
- L. V. Volkova and G. T. Zatsepin, Bull. Acad. Sci. USSR, Phys. Ser. 38 (1974) 151.

And more ...

2. Neutrino Oscillation Tomography

- Using the matter effect of neutrino oscillation.
- T. Ohlsson andW.Winter, Europhys. Lett. 60 (2002) 34
- E. K. Akhmedov, M. A. Tortola and J.W. F. Valle, JHEP 0506, 053 (2005)
- W.Winter, Nucl. Phys. B 908 (2016) 250
- A.N. Ioannisian and A. Y. Smirnov, Phys. Rev. D 96 (2017) no.8, 083009

And more ...
In this talk, we discuss about this type!
(3. Neutrino Diffraction Tomography)

- Measure the diffraction pattern of crystalline matter in the deep interior of the Earth.
- Not realistic yet.
- A.D. Fortes, I. G.Wood, and L. Oberauer, Astron.

Geophys. 47(2006) 5.31-5.33.

- R. Lauter, Astron. Nachr. 338 (2017) no.1, 111.

There is no precise tomography method.

- There is no powerful source.

There is no established reconstruction method.

Neutrino Oscillation

Neutrino oscillation is phenomenon that the neutrino flavor will vary with distance. It is caused by the quantum mechanical superposition.

Neutrino flavor eigenstates is written by superposition of the mass eigenstates.

$U_{P M N S}$
Pontecorvo-Maki-Nakagawa-Sakata matrix

Mass eigenstates evolve respectively in time.
Then, because of the interference between the mass state, the flavor transition probability behaves oscillatory.

Neutrino Oscillation in Matter

Evolution equation of transition amplitudes of neutrino flavors is written as follow. In matter, additional effective potential is added to the vacuum Hamiltonian.

$$
i \frac{d}{d x} \vec{A}(x)=\left[H_{0}^{F}+V^{F}\right] \vec{A}(x)
$$

Vacuum contribution Additional effective potential

In 2 flavor case

$$
\begin{gathered}
\vec{A}(x)=\left(A_{\nu_{e} \rightarrow \nu_{e}}(x), A_{\nu_{e} \rightarrow \nu_{\mu}}(x)\right)^{T} \\
A_{\beta \alpha}(x)=\left\langle\nu_{\beta} \mid \nu_{\alpha}(x)\right\rangle
\end{gathered}
$$

- Neutrino interacts with the electron, proton, neutron in matter, through the CC and NC interaction.
- The contribution of the NC interaction is common to all flavors, and eliminated by the common phase shift.
- Therefore, the main contribution to the potential is the CC interaction and effective potential depend on the electron number density.

Neutrino Oscillation in Matter

For simplicity, we consider the $\mathbf{2}$ flavor neutrino oscillation

$$
i \frac{d}{d x}\binom{A_{\nu_{e} \rightarrow \nu_{e}}}{A_{\nu_{e} \rightarrow \nu_{\mu}}}=\left[U\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{\Delta m^{2}}{2 E}
\end{array}\right) U^{\dagger}+\left(\begin{array}{cc}
V_{C C}(x) & 0 \\
0 & 0
\end{array}\right)\right]\binom{A_{\nu_{e} \rightarrow \nu_{e}}}{A_{\nu_{e} \rightarrow \nu_{\mu}}}
$$

Effective potential is written as

$$
V_{C C}(x)=\sqrt{2} G_{F} n_{e}(x)
$$

The electron number density is translated into the matter density.

$$
n_{e}(x) \simeq \frac{\rho(x)}{2 m_{p}}
$$

Density Profile

Probability is calculated as follow

$$
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}\left(E_{\nu}, x\right)=\left|A_{\nu_{\alpha} \rightarrow \nu_{\beta}}\left(E_{\nu}, x\right)\right|^{2}
$$

Energy Spectrum of the Oscillation Probability change by the density profile.

Neutrino Oscillation Tomography

It is required the precise measurement of the energy spectrum. So, powerful neutrino source is required.

Method

Neutrino Pair Beam

The pair beam, which has been proposed recently, can produced a large amount of neutrino pairs from the circulating partially stripped ions.
[Yoshimura, Sasao, Phys. Rev. D 92, 073015 (2015)]

Characteristics of the Neutrino Pair Beam

- It generates the all flavor neutrino pairs

$$
\left(\nu_{e}, \overline{\nu_{e}}\right),\left(\nu_{\mu}, \overline{\nu_{\mu}}\right),\left(\nu_{\tau}, \overline{\nu_{\tau}}\right)
$$

- Very high intensity flux of neutrino beam
- High beam directivity

Forward production spectrum

Fig. 7. Neutrino energy spectrum rate at the forward direction of solid angle area π / γ^{2}. Assumed parameters are $\rho \epsilon_{e g}=10^{14}, N=10^{8}$ and $\epsilon_{e g}=50 \mathrm{keV}$, $\gamma=4000$ in solid black, 5000 in dashed red, 6000 in dash-dotted blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
[Asaka,Tanaka,Yoshimura, Phys.Lett. B760 (2016) 359-364]
Neutrino Tomography requires the precise measurement of the energy spectrum for the precise reconstruction of the density profile.

This high event rate (high flux) is essential.

- We consider the symmetric exponential type of the density profile.

$$
\rho(x)=\bar{\rho}+\left(\rho_{l}-\bar{\rho}\right) \exp \left[-\frac{\left(x-\frac{L}{2}\right)^{2}}{D_{l}^{2}}\right]
$$

L : length of the baseline
D_{1} : width of the lump

Source Point
Lump
Detection Point

- We consider the low energy $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$ oscillation.

$$
E_{\nu}: 2 \sim 100[\mathrm{MeV}]
$$

- We assume the huge liquid Argon as the neutrino detector.

Fiducial volume $10^{5} \mathrm{~m}^{3}$

We estimate how precisely the width $\left(D_{*}\right)$ and $\operatorname{density}\left(\rho_{*}\right)$ of the lump can be reconstructed under this set up.

$$
\rho(x)=\bar{\rho}+\left(\rho_{l}-\bar{\rho}\right) \exp \left[-\frac{\left(x-\frac{L}{2}\right)^{2}}{D_{l}^{2}}\right] \quad \bar{\rho}=2.7\left[\mathrm{~g} / \mathrm{cm}^{3}\right]
$$

We perform the X^{2} analysis.

$$
\Delta \chi^{2}=\sum_{i=1}^{N_{b}} \frac{\left[\left.N\left(E_{i}\right)\right|_{D_{*}, \rho_{*}}-\left.N\left(E_{i}\right)\right|_{D_{l}, \rho_{l}}\right]^{2}}{\sigma^{2}\left(E_{i}\right)}
$$

$N_{b}=100$: the number of energy bin
$\mathrm{N}=$ flux \times oscillation probability \times detection rate We assume 1 year as experimental running time. We assume the 3 density profile.

The pair beam can probe the lump at the 1σ level as
(A) $D_{*}=50_{-5.9}^{+5.9} \mathrm{~km}$ and $\rho_{*}=8.0_{-0.48}^{+0.62} \mathrm{~g} \mathrm{~cm}^{-3}$,
(B) $D_{*}=50_{-2.4}^{+2.5} \mathrm{~km}$ and $\rho_{*}=16_{-0.53}^{+0.58} \mathrm{~g} \mathrm{~cm}^{-3}$,
(C) $D_{*}=100_{-7.1}^{+8.2} \mathrm{~km}$ and $\rho_{*}=8.0_{-0.21}^{+0.22} \mathrm{~g} \mathrm{~cm}^{-3}$,

It is seen that the neutrino pair beam can provide the measurement of the density profile.

D* $[\mathrm{km}]$
--: 1 o region

- : 3 o region

Neutrino Oscillation Tomography

How reconstruct the density profile from the energy spectrum of the neutrino oscillation?

Density Profile Reconstruction Method

1. We discretize the neutrino baseline into the $N_{\llcorner }$segments.

2. We consider the matter densities for these segments as free parameters ρ_{j}.

We assume that the each density is constant within each segment.
3. We also divide the energy range into the N_{E} parts, and define the X^{2} function

$$
\chi^{2}=\sum_{i=1, N_{E}} \frac{\left[N^{\mathrm{obs}}\left(E_{i}\right)-N^{\mathrm{th}}\left(E_{i}\right)\right]^{2}}{\sigma^{2}\left(E_{i}\right)} \quad \sigma\left(E_{i}\right)=\sqrt{N^{\mathrm{obs}}\left(E_{i}\right)} .
$$

4. We determine those density by minimizing the X^{2} function by comparing the experimental data $N^{\mathrm{obs}}\left(E_{i}\right)$ for a given original profile $\boldsymbol{\rho}(\mathbf{x})$ with the theoretical prediction $N^{\text {th }}\left(E_{i}\right)$ from unknown parameters ρ_{j}.

Perturbation Formula

We introduce the perturbation formula of the neutrino oscillation probability which is used for the theoretical prediction $N^{\text {th }}\left(E_{i}\right)$ from unknown parameters ρ_{j}.

$$
\begin{aligned}
& N^{\text {th }}\left(E_{i}\right)= \text { flux } \times P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}}(E, L) \\
& \text { Neutrino Oscillation Probability }
\end{aligned}
$$

Neutrino Oscillation Probability is calculated from the this evolution equation.

$$
i \frac{d}{d x} \vec{A}(x)=\left[H_{0}^{F}+V^{F}\right] \vec{A}(x)
$$

Then we assume the relation $H_{0}^{F}>V^{F}$
And calculate the oscillation probability by perturbation.

$$
\begin{aligned}
& P_{\alpha \beta}=\left|A_{\beta \alpha}^{(0)}+A_{\beta \alpha}^{(1)}+A_{\beta \alpha}^{(2)}+\cdots\right|^{2} \\
&=\left|A_{\beta \alpha}^{(0)}\right|^{2}+A_{\beta \alpha}^{(0) *} A_{\beta \alpha}^{(1)}+A_{\beta \alpha}^{(0)} A_{\beta \alpha}^{(1) *}+\left|A_{\beta \alpha}^{(1)}\right|^{2}+A_{\beta \alpha}^{(0) *} A_{\beta \alpha}^{(2)}+A_{\beta \alpha}^{(0)} A_{\beta \alpha}^{(2) *}+\cdots \\
& \text { 1st }
\end{aligned}
$$

Ex) perturbation formula at 1st order is written as

$$
P^{(1)}\left(E_{i}\right) \propto \sum \rho\left(x_{j}\right)\left[\sin \left\{\frac{\Delta m^{2}}{2 E_{I}} L\right\}-\sin \left\{\frac{\Delta m^{2}}{2 E_{I}} x_{j}\right\}-\sin \left\{\frac{\Delta m^{2}}{2 E_{\nu}}\left(L-x_{j}\right)\right\}\right]
$$

We find the 2nd order perturbation is important for the successful reconstruction.
\star Minimize $\quad \chi^{2}=\sum_{i=1, N_{E}} \frac{\left[N^{\mathrm{obs}}\left(E_{i}\right)-N^{\mathrm{th}}\left(E_{i}\right)\right]^{2}}{\sigma^{2}\left(E_{i}\right)}$
And reconstruct the density profile.
$N=$ flux \times oscillation probability \times detection rate

* We assume about the fitting parameter (matter density in the each segment)

$$
\rho_{j} \geq 0 \quad N^{t h}\left(E_{i}, \rho_{j}\right)
$$

\star We assume $N^{\mathrm{obs}}\left(E_{i}\right)$ as event rate by the calculation from evolution equation with original matter density profile.

$$
\begin{gathered}
i \frac{d}{d x}\binom{A_{\nu_{e} \rightarrow \nu_{e}}}{A_{\nu_{e} \rightarrow \nu_{\mu}}}=\left[U\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{\Delta m^{2}}{2 E}
\end{array}\right) U^{\dagger}+\left(\begin{array}{cc}
V_{C C}(x) & 0 \\
0 & 0
\end{array}\right)\right]\binom{A_{\nu_{e} \rightarrow \nu_{e}}}{A_{\nu_{e} \rightarrow \nu_{\mu}}} \\
V_{C C}(x)=\sqrt{2} G_{F} n_{e}(x) \\
n_{e}(x) \simeq \frac{\rho(x)}{2 m_{p}}
\end{gathered}
$$

Results of reconstruction

Result of the flat density

$$
\bar{\rho}=2.7\left[\mathrm{~g} / \mathrm{cm}^{3}\right]
$$

Result with using the 1st order formula

Result with using the 2nd order formula

Reconstruction of 60 points

- : Original density profile
- : reconstructed density profile

Result with using the 2nd order formula

- : Original density profile
- : reconstructed density profile

$$
\bar{\rho}=2.7\left[\mathrm{~g} / \mathrm{cm}^{3}\right]
$$

The lump of water

Original density profile

$$
\begin{aligned}
& 1 \text { density profile } \\
& \rho(x)=\bar{\rho}+\left(\rho_{l}-\bar{\rho}\right) \exp \left[-\frac{\left(x-\frac{L}{2}\right)^{2}}{D_{l}^{2}}\right]
\end{aligned}
$$

We could reconstruct the density profile of lump.

Result of the exotic density profile

- : Original density profile
using the 2nd order formula
- : reconstructed density profile

Reconstruction of 60 points
We could reconstruct the exotic density profile.

Summary

Summary

We have investigated the oscillation tomography by the neutrino pair beam.

This talk

- The neutrino pair beam is powerful source to the probe of the Earth's interior.
- The reconstruction method with the 2nd order perturbation formula is powerful tool.
- It has been demonstrated that the profile can be reconstructed well by including the 2nd order correction. We believe that these two ingredients give considerable progress toward the realization of the neutrino tomography.

Toward to the realization of the neutrino tomography

- the realistic 3 flavor oscillation.
- the method with the reconstruction of the asymmetric density profile.
- the more realistic set up.
(- uncertainty of the real experiment)
(- realistic target of the neutrino tomography)
ex.) Earth's core and mantle, mineral, oil, etc...

Back Up

Degeneracy of the 2 flavor Neutrino Oscillation

If we consider the $\mathbf{2}$ flavor oscillation, probability degenerate by the Unitarity.

$$
\begin{aligned}
& P\left(\nu_{e} \rightarrow \nu_{e}\right)+P\left(\nu_{e} \rightarrow \nu_{\mu}\right)=1 \\
& P\left(\nu_{e} \rightarrow \nu_{e}\right)+P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=1 \\
& \quad \therefore P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=P\left(\nu_{e} \rightarrow \nu_{\mu}\right)
\end{aligned}
$$

So, Oscillation probability with asymmetric density profile coincide with the another one.

Same Oscillation Probability

Density profile with left side lump

Condition of perturbation

Perturbation formulae

SI2018

1st order

$$
P^{(1)}\left(\nu_{e} \rightarrow \nu_{e}\right)=\frac{G_{F}}{2 \sqrt{2} m_{p}} \sin ^{2} 2 \theta \cos 2 \theta \int_{0}^{L} d x \rho(x)\left[\sin \left\{\frac{\Delta m^{2}}{2 E} L\right\}-\sin \left\{\frac{\Delta m^{2}}{2 E} x\right\}-\sin \left\{\frac{\Delta m^{2}}{2 E}(L-x)\right\}\right]
$$

2nd order

$$
\left.\begin{array}{l}
P^{(2)}\left(\nu_{e} \rightarrow \nu_{e} ; t\right)=P^{(2 a)}\left(\nu_{e}\right.
\end{array} \begin{array}{rl}
\left.\nu_{e} ; t\right)+P^{(2 b)}\left(\nu_{e} \rightarrow \nu_{e} ; t\right) \\
P^{(2 a)}\left(\nu_{e} \rightarrow \nu_{e} ; t\right) & =\left[\cos ^{8} \theta+\sin ^{8} \theta+2 \cos ^{4} \theta \sin ^{4} \theta \cos (\Phi t)\right] G_{1}(t)^{2} \\
& +\cos ^{4} \theta \sin ^{4} \theta\left[G_{2}(t)^{2}+G_{3}(t)^{2}\right] \\
& +2\left(\cos ^{4} \theta+\sin ^{4} \theta\right) \cos ^{2} \theta \sin ^{2} \theta G_{1}(t) G_{2}(t)
\end{array} \begin{array}{rl}
P^{(2 b)}\left(\nu_{e} \rightarrow \nu_{e} ; t\right) & =-2 \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} V_{C C}\left(t_{1}\right) V_{C C}\left(t_{2}\right) \\
& \times\left\{+\cos ^{8} \theta+\sin ^{8} \theta\right. \\
& +\cos ^{2} \theta \sin ^{2} \theta\left(\cos ^{4} \theta+\sin ^{4} \theta\right)\left[\cos (\Phi t)+\cos \left(\Phi t_{2}\right)+\cos \left(\Phi\left(t_{2}-t_{1}\right)\right)+\cos \left(\Phi\left(t_{1}-t\right)\right)\right] \\
& \left.+2 \cos ^{4} \theta \sin ^{4} \theta\left[\cos \left(\Phi\left(t_{2}-t\right)\right)+\cos \left(\Phi t_{1}\right)+\cos \left(\Phi\left(t_{2}-t_{1}+t\right)\right)\right]\right\} \\
& G_{1}(t)=\int_{0}^{t} d t_{1} V_{C C}\left(t_{1}\right)
\end{array}\right\}
$$

Reconstruction with 1st order perturbation

The result when the number of devisors is increased.

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{E}}=300 \\
& \mathrm{~N}_{\mathrm{L}}=300
\end{aligned}
$$

- : Original density profile
- : reconstructed density profile

Reconstruction with 2nd order perturbation

We see the dependence of density.

We can't reconstruct if the density becomes too small in this method.

- : reconstructed density profile
- : Original density profile

Reconstruction with 2nd order perturbation

We see the dependence of width of lump.

