Direct and indirect searches of heavy neutrinos via the Higgs sector

Cédric Weiland

Institute for Particle Physics Phenomenology, Durham University¹

24th International Summer Institute On Phenomenology of Elementary Particle and Cosmology 13 August 2018

¹Moving to the University of Pittsburgh, on September 1st

Cédric Weiland (IPPP Durham)

 ν searches with Higgs

SI2018 1 / 39

 m_2^2

 m_2^2 m_1^2

Neutrino phenomena

- Neutrino oscillations (best fit from nu-fit.org): solar $\theta_{12} \simeq 34^{\circ} \qquad \Delta m_{21}^2 \simeq 7.4 \times 10^{-5} \text{eV}^2$ atmospheric $\theta_{23} \simeq 47^{\circ} \qquad |\Delta m_{23}^2| \simeq 2.5 \times 10^{-3} \text{eV}^2$ reactor $\theta_{13} \simeq 8.5^{\circ}$
- Absolute mass scale: cosmology $\Sigma m_{\nu_i} < 0.12 \text{ eV}$ [Planck, 2018] β decays $m_{\nu_e} < 2.05 \text{ eV}$ [Mainz, 2005; Troitsk, 2011]
 - Different mixing pattern from CKM, ν lightness \leftarrow Majorana ν
- Neutrino nature (Dirac or Majorana): Neutrinoless double β decays m_{2β} < 0.061 - 0.165 eV [KamLAND-ZEN, 2016]

Massive neutrinos and New Physics

- Standard Model $L = {\nu_L \choose \ell_L}, \tilde{\phi} = {H^{0*} \choose H^{-}}$
 - No right-handed neutrino $\nu_R \rightarrow$ No Dirac mass term

$$\mathcal{L}_{\text{mass}} = -Y_{\nu}\bar{L}\tilde{\phi}\nu_{R} + \text{h.c.}$$

No Higgs triplet T
 → No Majorana mass term

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2}f\overline{L}TL^{c} + \text{h.c.}$$

- - Radiative models
 - Extra-dimensions
 - R-parity violation in supersymmetry
 - Seesaw mechanisms $\rightarrow \nu$ mass at tree-level
 - + BAU through leptogenesis

Dirac neutrinos ?

• Add gauge singlet (sterile), right-handed neutrinos $\nu_R \Rightarrow \nu = \nu_L + \nu_R$ $\mathcal{L}_{mass}^{\text{leptons}} = -Y_\ell \bar{L} \phi \ell_R - Y_\nu \bar{L} \tilde{\phi} \nu_R + \text{h.c.}$

 $\Rightarrow \text{After electroweak symmetry breaking } \langle \phi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix} \\ \mathcal{L}_{\text{mass}}^{\text{leptons}} = -m_{\ell} \bar{\ell}_{L} \ell_{R} - m_{D} \bar{\nu}_{L} \nu_{R} + \text{h.c.}$

 \Rightarrow 3 light active neutrinos: $m_{\nu} \leq 0.1 \text{eV} \Rightarrow Y^{\nu} \leq 10^{-12}$

Majorana neutrinos ?

• Add gauge singlet (sterile), right-handed neutrinos ν_R $\mathcal{L}_{mass}^{\text{leptons}} = -Y_\ell \bar{L} \phi \ell_R - Y_\nu \bar{L} \tilde{\phi} \nu_R - \frac{1}{2} M_R \overline{\nu_R} \nu_R^c + \text{h.c.}$

 $\Rightarrow \text{After electroweak symmetry breaking } \langle \phi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$ $\mathcal{L}_{\text{mass}}^{\text{leptons}} = -m_{\ell} \ell_L \ell_R - m_D \bar{\nu}_L \nu_R - \frac{1}{2} M_R \overline{\nu_R} \nu_R^c + \text{h.c.}$

 $3\nu_R \Rightarrow 6$ mass eigenstates: $\nu = \nu^c$

- ν_R gauge singlets $\Rightarrow M_R$ not related to SM dynamics, not protected by symmetries $\Rightarrow M_R$ between 0 and M_P
- $M_R \overline{\nu_R} \nu_R^c$ violates lepton number conservation $\Delta L = 2$

The seesaw mechanisms

- Seesaw mechanism: new fields + lepton number violation
 - \Rightarrow Generate m_{ν} in a renormalizable way and at tree-level
- 3 minimal tree-level seesaw models \Rightarrow 3 types of heavy fields
 - type I: right-handed neutrinos, SM gauge singlets
 - type II: scalar triplets
 - type III: fermionic triplets

[Minkowski, 1977, Gell-Mann et al., 1979, Yanagida, 1979, Mohapatra and Senjanovic, 1980, Schechter and Valle, 1980]

[Magg and Wetterich, 1980,

Schechter and Valle, 1980, Wetterich, 1981,

Lazarides et al., 1981,

Mohapatra and Senjanovic, 1981]

Cédric Weiland (IPPP Durham)

 ν searches with Higgs

Higgs mass corrections and seesaw scale

• Seesaw scales and natural Yukawa couplings

$$\begin{array}{cc} \mbox{For } m_{\nu} \sim 0.1 \mbox{ eV} \\ \mbox{Type I} \mbox{/ Type III:} & \mbox{Type II:} \\ \mbox{either } Y_{\nu} \sim \mathcal{O}(1) \mbox{ with } M \sim 10^{14} \mbox{GeV} & \mbox{} Y_{\Delta} \sim \mathcal{O}(1) \mbox{ and } M_{\Delta} \sim 1 \mbox{ TeV} \\ \mbox{or } Y_{\nu} \sim \mathcal{O}(10^{-6}) \mbox{ with } M \sim 1 \mbox{ TeV} & \mbox{ with } \mu_{\Delta} \sim 100 \mbox{ eV} \end{array}$$

But naturalness issues with the Higgs mass

[Vissani, 1998, Farina et al., 2013, de Gouvea et al., 2014, Clarke et al., 2015]... Type I seesaw: fine-tuning of $\mathcal{O}(1) \Rightarrow M_{N_1}, M_{N_2} < \mathcal{O}(10^7) \text{ GeV}$ Type II seesaw: fine-tuning of $\mathcal{O}(1) \Rightarrow M < \mathcal{O}(200) \text{ GeV}$ Type III seesaw: fine-tuning of $\mathcal{O}(1) \Rightarrow M < \mathcal{O}(10^3) \text{ GeV}$

A rich phenomenology

• $10^9 \text{ GeV} < M < 10^{15} \text{ GeV}$: GUT embedding Tension with naturalness

E.g. Type I seesaw [Minkowski, 1977, Gell-Mann et al., 1979,

Yanagida, 1979, Mohapatra and Senjanovic, 1980, Schechter and Valle, 1980]

• $\underline{M \sim \text{TeV}}$: Related to electroweak symmetry breaking ? Modified Higgs self-couplings New Higgs production modes Lepton flavour violating (LFV) Higgs decays

E.g. Inverse seesaw [Mohapatra and Valle, 1986, Bernabéu et al., 1987]

- $\underline{M} \sim \text{GeV}$: New Higgs decay channels
 - E.g. Minimal model: vMSM [Asaka et al., 2005]
- $M \sim \text{keV}$: Warm dark matter candidate
- $M \sim eV$: Anomalies in neutrino oscillations

Sterile neutrino mass

Towards testable Type I variants

• Taking $M_R \gg m_D$ gives the "vanilla" type 1 seesaw $m_{\nu} = -m_D M_P^{-1} m_D^T$

- Cancellation in matrix product to get large m_D/M_R
 - Lepton number, e.g. low-scale type I [Ilakovac and Pilaftsis, 1995] and others inverse seesaw [Mohapatra and Valle, 1986, Bernabéu et al., 1987] linear seesaw [Akhmedov et al., 1996, Barr, 2004, Malinsky et al., 2005]
 - Flavour symmetry, e.g. $A_4 \times \mathbb{Z}_2$ [Chao et al., 2010]

 A_4 or $\Sigma(81)$ [Chattopadhyay and Patel, 2017]

 $\mathbb{Z}(3)$ [Gu et al., 2009]

Gauge symmetry, e.g. U(1)_{B-L} [Pati and Salam, 1974] and others

 $m_{\nu} = 0$ equivalent to conserved L for models with 3 ν_R or less of equal mass [Kersten and Smirnov, 2007]

Cédric Weiland (IPPP Durham)

 ν searches with Higgs

Extending the Kersten-Smirnov theorem

- Can the result of Kersten and Smirnov be generalized ?
- Are lepton number violating processes suppressed in all low-scale seesaw models ?

Theorem [Moffat, Pascoli, CW, 2017]

If: - no cancellation between different orders of the seesaw expansion^a
 - no cancellations between different radiative orders^b

Then $m_{\nu} = 0$ equivalent to having the neutrino mass matrix, in the basis $(\nu_{L}^{C}, \{\nu_{R,1}^{(1)}...\nu_{R,n}^{(1)}\}, \{\nu_{R,1}^{(2)}...\nu_{R,n}^{(2)}\}, \{\nu_{R,1}^{(3)}...\nu_{R,m}^{(3)}\})$

$$ilde{M} = \left(egin{array}{cccc} 0 & lpha & \pm ilpha & 0 \ lpha^T & M_1 & 0 & 0 \ \pm ilpha^T & 0 & M_1 & 0 \ 0 & 0 & 0 & M_2 \end{array}
ight),$$

for an arbitrary number of ν_R and to all radiative orders, with M_1 and M_2 diagonal matrices with positive entries and α a generic complex matrix.

^aThis is a necessary requirement to satisfy phenomenological constraints ^bThese are highly fine-tuned solution that cannot be achieved solely by specific textures of the neutrino mass matrix

Cédric Weiland (IPPP Durham)

Corollary on lepton number violation

Using a unitary matrix D, let us construct

$$\mathcal{Q} = \left(egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & \pm rac{i}{\sqrt{2}}D & rac{1}{\sqrt{2}}D & 0 \ 0 & rac{1}{\sqrt{2}}D & \pm rac{i}{\sqrt{2}}D & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

then through a change of basis

$$Q^{T}\tilde{M}Q = \begin{pmatrix} 0 & \pm i\sqrt{2}(D^{T}\alpha^{T})^{T} & 0 & 0\\ \pm i\sqrt{2}D^{T}\alpha^{T} & 0 & \pm iD^{T}M_{1}D & 0\\ 0 & \pm iD^{T}M_{1}D & 0 & 0\\ 0 & 0 & 0 & M_{2} \end{pmatrix} \sim \begin{pmatrix} 0 & M_{D}^{T} & 0 & 0\\ M_{D} & 0 & M_{R} & 0\\ 0 & M_{R}^{T} & 0 & 0\\ 0 & 0 & 0 & M_{2} \end{pmatrix}$$

- Similar to the L conserving limit of inverse and/or linear seesaw
- Explicitly L conserving taking the L assignment (+1, -1, +1, 0)

Corollary [Moffat, Pascoli, CW, 2017]

The most general gauge-singlet neutrino extensions of the SM with no cancellation between different orders of the seesaw expansion, no fine-tuned cancellations between different radiative orders and which lead to three massless neutrinos are L conserving.

Cédric Weiland (IPPP Durham)

Consequences for phenomenology and model building

- Any symmetry that leads to massless light neutrinos contains L as a subgroup or an accidental symmetry
- Prove the requirement of a nearly conserved L in low-scale seesaw models, baring fine-tuned solutions involving different radiative orders
- In these models, smallness of the light neutrino mass related to the smallness of the L breaking parameter, or equivalently to the degeneracy of the heavy neutrinos in pseudo-Dirac pairs
- Expect L violating signatures to be suppressed
- Seems to be applicable to type III seesaw variants as well
 → Addendum in preparation

The inverse seesaw: a typical low-scale seesaw model

• Add fermionic gauge singlets ν_R (L = +1) and X (L = -1)

[Mohapatra, 1986, Mohapatra and Valle, 1986, Bernabéu et al., 1987]...

$$\mathcal{L}_{inverse} = -Y_{\nu}\overline{L}\widetilde{\phi}\nu_{R} - M_{R}\overline{\nu_{R}^{c}}X - \frac{1}{2}\mu_{X}\overline{X^{c}}X + \text{h.c.}$$

with
$$m_D = Y_{\nu}v$$
, $M^{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_X \end{pmatrix}$
 $m_{\nu} \approx \frac{m_D^2}{M_R^2} \mu_X$
 $m_{N_1,N_2} \approx \mp M_R + \frac{\mu_X}{2}$
 H
 H
 v_R
 v_R
 L
 L
 L
 $2 \text{ scales: } \mu_X \text{ and } M_R$

- Decouple neutrino mass generation from active-sterile mixing
- Inverse seesaw: $Y_{\nu} \sim \mathcal{O}(1)$ and $M_R \sim 1 \text{ TeV}$
 - ⇒ Potentially sizeable impact on the Higgs properties

Modified couplings

- In ISS and other low-scale seesaw models: 3 light active and *m* heavy sterile neutrinos, with masses *m*₁, ..., *m*_m and mixing *V*
- Modified couplings to W^{\pm} , Z^0 , H

$$\mathcal{L} \ni -\frac{g_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} W_{\mu}^{-} V_{ij} P_L n_j -\frac{g_2}{2 \cos \theta_W} \bar{n}_i \gamma^{\mu} Z_{\mu} (V^{\dagger} V)_{ij} P_L n_j \qquad V_{3 \times m} = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} & V_{e4} & \dots \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} & V_{\mu 4} & \dots \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} & V_{\tau 4} & \dots \end{pmatrix} -\frac{g_2}{2M_W} \bar{n}_i (V^{\dagger} V)_{ij} H(m_i P_L + m_j P_R) n_j$$

• Naive scaling of the Higgs coupling:

$m_N < m_H$

Modified Higgs decay width

- $m_N < m_H$: New kinematically accessible decay channels: $H \rightarrow \nu N/NN$
- Modify the total Higgs width $\Gamma_H = \Gamma_H^{\text{SM}} + \Gamma_H^{\text{new}}$ [Cely et al., 2013, Antusch and Fischer, 2015]
- Derive constraints from precision measurements of $Br(H \rightarrow VV)$

Figures taken from [Antusch and Fischer, 2015]

LHC limits derived using 7 and 8 TeV data

Focus on a specific final state

• Carefully chosen final state and dedicated analysis can do better, e.g. $H \rightarrow 2\ell 2\nu$ at a hadronic collider [Bhupal Dev et al., 2012]

 $m_N < m_H$

• Results based on recasting the 7 TeV CMS search for $H \rightarrow WW \rightarrow 2\ell 2\nu$ [Chatrohyan et al., 2012]

Displaced vertices from Higgs decays

For m_N ≤ 10 Gev, long-lived heavy neutrino
 ⇒ Displaced vertex searches from H decays become very powerful [Gago et al., 2015]

 $m_N < m_H$

(Right) Red (orange): more than 250 (50) events with a displaced vertex, for $\mathcal{L} = 300 \, \mathrm{fb}^{-1}$ at 13 TeV, blue: ruled out by direct searches, dashed line: reach of future $\mu - e$ conversion experiments (Mu2e, COMET)

Cédric Weiland (IPPP Durham)

 ν searches with Higgs

$m_N < m_H$

Displaced vertices: Higgs relevance

• In the end, Higgs are subdominant: extra suppression factor of m_N/m_W [Abada et al., 2018]

Figures taken from [Abada et al., 2018] and [Gago et al., 2015]

Number of displaced vertes events for $\mathcal{L} = 300 \text{ fb}^{-1}$ at 13 TeV. (Right) Red (orange): more than 250 (50) events, blue: ruled out by direct searches, dashed line: reach of future $\mu - e$ conversion experiments (Mu2e, COMET)

The Higgs sector in a nutshell

• Scalar potential before EWSB:

$$V(\phi) = -m^2 |\phi|^2 + \lambda |\phi|^4$$

Both m and λ are free parameters

• After EWSB: $m_H^2 = 2m^2$, $v^2 = \mu^2/\lambda$

$$\phi = \begin{pmatrix} 0\\ \frac{\nu+H}{\sqrt{2}} \end{pmatrix} \rightarrow V(H) = \frac{1}{2}m_H^2 H^2 + \frac{1}{3!}\lambda_{HHH}H^3 + \frac{1}{4!}\lambda_{HHHH}H^2$$

and

$$\lambda^0_{HHH} = -rac{3M_H^2}{\mathrm{v}}\,,\quad \lambda^0_{HHHH} = -rac{3M_H^2}{\mathrm{v}^2}$$

Vacuum stability constraints

Similarly to the top quark, heavy N can destabilise the vacuum

[Rodejohann and Zhang, 2012, Chakrabortty et al., 2013, Masina, 2013]... • Evaluated by considering the running of the quartic Higgs coupling λ [Delle Rose et al., 2015]

$$\beta_{\lambda} = \frac{1}{16\pi^{2}} \left[24\lambda^{2} + \lambda \left(12y_{t}^{2} + 4\text{Tr}[Y_{\nu}^{\dagger}Y_{\nu}] - \frac{9}{5}g_{1}^{2} - 9g_{2}^{2} \right) - 6y_{t}^{4} - 2\text{Tr}[Y_{\nu}^{\dagger}Y_{\nu}]^{2} + \frac{27}{200}g_{1}^{4} + \frac{9}{8}g_{2}^{4} + \frac{9}{20}g_{1}^{2}g_{2}^{2} \right]$$

Cédric Weiland (IPPP Durham)

Higgs effective quartic coupling $\lambda_{\rm eff}$

The neutrino option or: How I Learned to Stop Worrying and Love $m_N > m_H$

 $m_N > m_H$

• Idea: Have the seesaw mechanism generate the scalar potential at a high scale where $\lambda \sim 0$ and m = 0 from scale invariance [Brivio and Trott, 2017]

from Brivio, EPS-HEP 2017

Can the neutrino option work ?

• Threshold corrections in type I seesaw:

- Required assumptions:
 - These are the dominant contributions at $\mu \simeq M_N$
 - Threshold contributions from other BSM physics are negligible
 - SM loop corrections are negligible as well: true if $Y_{\nu}M_N \gg \langle \phi \rangle, \Lambda_{QCD}$
- All OK: minimal realisation is SM + 3 ν_R + 2 singlet scalars with scale invariance broken by the Coleman-Weinberg mechanism [Brdar et al., 2018]

The triple Higgs coupling: at the heart of SM probes

 $m_N > m_H$

- Well-motivated study in the SM
 - Reconstruct the scalar potential
 - \rightarrow validate the Higgs mechanism as the origin of EWSB
 - Sizeable SM 1-loop corrections (O(10%))
 - → Quantum corrections cannot be neglected
 - One of the main motivations for future colliders
- Experimentally extracted from HH production

Most relevant constraints for the ISS

• Accommodate low-energy neutrino data using parametrization

 $m_N > m_H$

[Casas and Ibarra, 2001; Arganda, Herrero, Marcano, CW, 2015; Baglio and CW, 2017]

$$vY_{\nu}^{T} = U^{\dagger} \operatorname{diag}(\sqrt{M_{1}}, \sqrt{M_{2}}, \sqrt{M_{3}}) R \operatorname{diag}(\sqrt{m_{1}}, \sqrt{m_{2}}, \sqrt{m_{3}}) U_{PMNS}^{\dagger}$$
$$M = M_{R} \mu_{X}^{-1} M_{R}^{T}$$
or

$$\mu_X = M_R^T Y_\nu^{-1} U_{\text{PMNS}}^* m_\nu U_{\text{PMNS}}^\dagger Y_\nu^{T^{-1}} M_R v^2 \qquad \text{and beyond}$$

• Charged lepton flavour violation

ightarrow For example: ${
m Br}(\mu
ightarrow e\gamma) < 4.2 imes 10^{-13}$ [MEG, 2016]

- Global fit to EWPO and lepton universality tests [Fernandez-Martinez et al., 2016]
- Electric dipole moment: 0 with real PMNS and mass matrices
- Invisible Higgs decays: M_R > m_H, does not apply
- Yukawa perturbativity: $\left|\frac{Y_{\nu}^{2}}{4\pi}\right| < 1.5$

λ_{HHH} : Calculation in the ISS

- Generically: impact of new fermions coupling through the neutrino portal
- New 1-loop diagrams and new counterterms

 \rightarrow Evaluated with <code>FeynArts</code>, <code>FormCalc</code> and <code>LoopTools</code>

• OS renormalization scheme

Formulas for both Dirac and Majorana fermions coupling through the neutrino portal are available [Baglio and CW, 2016; Baglio and CW, 2017]

λ_{HHH} : Momentum dependence

•
$$\Delta^{(1)}\lambda_{HHH} = \frac{1}{\lambda^0} \left(\lambda_{HHH}^{1r} - \lambda^0\right)$$

- Focus on 1 neutrino contribution, fixed mixing $V_{\tau 4} = 0.087, V_{e/\mu 4} = 0$
- Deviation from the SM correction in the insert

•
$$\max|(V^{\dagger}V)_{i4}|m_{n_4} = m_t$$

 $\rightarrow m_{n_4} = 2.7 \text{ TeV}$
tight perturbativity of λ_{HHH} bound:
 $m_{n_4} = 7 \text{ TeV}$
width bound: $m_{n_4} = 9 \text{ TeV}$

- Largest positive correction at q^{*}_H ≃ 500 GeV, heavy ν decreases it
- Large negative correction at large q_H^* , heavy ν increases it

λ_{HHH} : Results using the Casas-Ibarra parametrization

Random scan: 180000 points with degenerate M_R and μ_X

 $\begin{array}{rl} 0 & \leqslant \theta_i & \leqslant 2\pi, \ (i=1,2,3) \\ 0.2 \ {\rm TeV} & \leqslant M_R & \leqslant 1000 \ {\rm TeV} \\ 7 \times 10^{-4} \ {\rm eV} & \leqslant \mu_X & \leqslant 8.26 \times 10^4 \ {\rm eV} \end{array}$

• $\Delta^{\text{BSM}} = \frac{1}{\lambda_{\text{HHH}}^{\text{Ir,SM}}} \left(\lambda_{\text{HHH}}^{\text{Ir,full}} - \lambda_{\text{HHH}}^{\text{Ir,SM}} \right)$

- Strongest constraints:
 - Lepton flavour violation, mainly $\mu \rightarrow e\gamma$
 - Yukawa perturbativity (and neutrino width)
- Large effects necessarily excluded by LFV constraints ?

 $\rightarrow \mu_X$ -parametrization with

 Y_{ν} diagonal

λ_{HHH} : Results using the μ_X -parametrization

 $m_N > m_H$

- $Y_{\nu} = 1, M_{R_1} = 3.6 \text{ TeV}, M_{R_2} = 8.6 \text{ TeV}, M_{R_3} = 2.4 \text{ TeV}$ full calculation in black, approximate formula in green
- Well described at $M_R > 3$ TeV by approximate formula

$$\Delta_{\rm approx}^{\rm BSM} = 0.51 \frac{(1 \text{ TeV})^2}{M_R^2} \left(8.45 \operatorname{Tr}(Y_\nu Y_\nu^{\dagger} Y_\nu Y_\nu^{\dagger}) - 0.145 \operatorname{Tr}(Y_\nu Y_\nu^{\dagger} Y_\nu Y_\nu^{\dagger} Y_\nu Y_\nu^{\dagger}) \right)$$

- Heavy ν effects at the limit of ILC (10%) sensitivity
- Heavy ν effects clearly visible at 100 TeV pp collider (5%)

Cédric Weiland (IPPP Durham)

Higgs production at e^+e^- colliders: $H + E_T$

• Mono-Higgs production from sterile neutrino decays [Antusch et al., 2016]

 $m_N > m_H$

• Dominated by t-channel *W* exchange. Sensitivity to the di-jet plus E_T final state at the ILC on the right.

Cédric Weiland (IPPP Durham)

Higgs production at e^+e^- colliders: W^+W^-H

 $m_N > m_H$

- Idea: Probe Y_{ν} at tree-level with off-shell N \Rightarrow t-channel $e^+e^- \rightarrow W^+W^-H$
- Good detection prospects in SM [Baillargeon et al., 1994]
- SM contributions: W^{-} e^+ γ/Z γ/Z W^+ Н SM+ISS contributions: n_i n_i n_i $\sim H$
 - SM electroweak corrections negligible for $\sqrt{s} > 600 \, \text{GeV}$ [Mao et al., 2009] \Rightarrow neglected in our analysis

W^+W^-H production: CoM energy dependence

- LO calculation, neglecting m_e
- Calculation done with FeynArts, FormCalc, BASES
- Deviation from the SM in the insert

• Polarized:
$$P_{e^-} = -80\%$$
, $P_{e^+} = 0$

•
$$\sigma(e^+e^- \rightarrow W^+W^-H)_{\text{pol}}$$

~ $2\sigma(e^+e^- \rightarrow W^+W^-H)_{\text{unpol}}$

•
$$Y_{\nu} = 1, M_{R_1} = 3.6 \text{ TeV},$$

 $M_{R_2} = 8.6 \text{ TeV}, M_{R_3} = 2.4 \text{ TeV}$

- Destructive interference between SM and heavy neutrino contributions
- Maximal deviation of -38% close to 3 TeV

University of Durham

W^+W^-H production: Results in the ISS

- Maximal deviation of -38%, $\sigma_{pol}^{ISS} = 1.23$ fb
 - \rightarrow ISS induces sizeable deviations in large part of the parameter space
- Provide a new probe of the O(10) TeV region
 ⇒ Complementary to existing observables

W^+W^-H production: Enhancing the deviations

- Stronger destructive interference from ISS for: central production – larger Higgs energy
- Cuts: $|\eta_H| < 1$, $|\eta_{W^{\pm}}| < 1$ and $E_H > 1$ TeV

	Before cuts	After cuts
$\sigma_{ m SM}$ (fb)	1.96	0.42
$\sigma_{\rm ISS}$ (fb)	1.23	0.14
Δ^{BSM}	-38%	-66%

Cédric Weiland (IPPP Durham)

Modified Higgs decays: lepton flavour violation

• Arise at the one-loop level

[Pilaftsis, 1992, Arganda et al., 2005]

(9)

- Absent in SM
 → Observation = BSM
 smoking gun
- Diagrams 1, 8, 10 dominate at large M_R [Arganda, Herrero, Marcano, CW,

[Arganda, Herrero, Marcano, CW 2015]

- Enhancement from: - $\mathcal{O}(1) Y_{\nu}$ couplings -TeV scale n_i
- Most relevant constraints: Low-energy neutrino data, other LFV decays (e.g. μ → eγ, τ → 3μ)

Cédric Weiland (IPPP Durham)

(8)

(7)

(10)

(6)

Predictions using the modified C-I parametrization

- Grows with M_{R_3} and μ_X^{-1} due to Y_{ν} growth in C-I parametrization
- Similar behaviour with degenerate heavy neutrinos
- Excluded by $\mu \rightarrow e\gamma$ Non-perturbative Y_{ν}
- $\operatorname{Br}(H \to \bar{\tau}\mu) \leqslant 10^{-9}$
- Conclusion left (mostly) unchanged from varying *R*

Large LFV Higgs decay rates from textures I

- Would the LHC observation of LFV Higgs decays exclude the ISS ? \rightarrow Look for the largest possible Br($H \rightarrow \tau \mu$)
- Possibility to evade the $\mu \rightarrow e\gamma$ constraint ?
- Approximate formulas for large Y_v:

$$\begin{aligned} \mathrm{Br}_{\mu \to e\gamma}^{\mathrm{approx}} = &8 \times 10^{-17} \mathrm{GeV}^{-4} \frac{m_{\mu}^{5}}{\Gamma_{\mu}} |\frac{\mathrm{v}^{2}}{2M_{R}^{2}} (Y_{\nu}Y_{\nu}^{\dagger})_{12}|^{2} \\ \mathrm{Br}_{H \to \mu \bar{\tau}}^{\mathrm{approx}} = &10^{-7} \frac{\mathrm{v}^{4}}{M_{R}^{4}} |(Y_{\nu}Y_{\nu}^{\dagger})_{23} - 5.7 (Y_{\nu}Y_{\nu}^{\dagger}Y_{\nu}Y_{\nu}^{\dagger})_{23}|^{2} \\ &= &10^{-7} \frac{\mathrm{v}^{4}}{M_{R}^{4}} |1 - 5.7 [(Y_{\nu}Y_{\nu}^{\dagger})_{22} + (Y_{\nu}Y_{\nu}^{\dagger})_{33}]|^{2} |(Y_{\nu}Y_{\nu}^{\dagger})_{23}|^{2} \end{aligned}$$

 \rightarrow Different dependence on the seesaw parameters

• Solution: Textures with $(Y_{\nu}Y_{\nu}^{\dagger})_{12} = 0$ and $\frac{|Y_{\nu}^{\mu}|^2}{4\pi} < 1.5$

Large LFV Higgs decay rates from textures II

 $m_N > m_H$

• Textures with
$$(Y_{\nu}Y_{\nu}^{\dagger})_{12} = 0$$
 and $\frac{|Y_{\nu}^{\parallel}|^2}{4\pi} < 1.5$
 $Y_{\tau\mu}^{(1)} = f\begin{pmatrix} 0 & 1 & -1\\ 0.9 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix}, Y_{\tau\mu}^{(2)} = f\begin{pmatrix} 0 & 1 & 1\\ 1 & 1 & -1\\ -1 & 1 & -1 \end{pmatrix}, Y_{\tau\mu}^{(3)} = f\begin{pmatrix} 0 & -1 & 1\\ -1 & 1 & 1\\ 0.8 & 0.5 & 0.5 \end{pmatrix}$

• Flavour composition of the heavy neutrinos:

- 3 very different flavour patterns
- Heavy neutrino mixing of $au \mu$ type is always present

LFV $H \rightarrow \tau \ell$ results

• ${
m Br}(H o au \mu) < 0.25\%$ [CMS-PAS-HIG-17-001] ${
m Br}(H o au \mu) < 1.43\%$ [ATLAS, EPJC77(2017)70]

- Numerics done with the full one-loop formulas
- Dotted: excluded by τ → μγ
 Solid: allowed by LFV, LUV,

• $\operatorname{Br}^{\max}(H \to \mu \bar{\tau}) \sim 10^{-5}$

- Same maximum branching ratio with hierarchical heavy N
- Similarly, ${\rm Br}^{\rm max}(H\to e\bar{\tau})\sim 10^{-5}$ for $Y^{(i)}_{\tau e}$ (= $Y^{(i)}_{\tau \mu}$ with rows 1 and 2 exchanged)
- Out of LHC reach, within the reach of future colliders
- In a supersymmetric model, ${\rm Br}^{\rm max}(H \to \mu \bar{\tau}) \sim 10^{-2}$ [Arganda, Herrero, Marcano, cw, 2016] \Rightarrow Within LHC reach

Conclusions

- ν oscillations → New physics is needed to generate masses and mixing
- One of the simplest ideas: Add right-handed, sterile neutrinos
- Naturalness requires seesaw scale $\leq 10^7$ GeV
- Models with nearly conserved lepton number → naturally large Yukawa Y_ν
- Modified H self-couplings
 - Vacuum stability provides constraints and new ideas for model building
 - $-\lambda_{HHH}$ can probe diagonal, real $Y_{
 u}$ and $\mathcal{O}(10\,{
 m TeV})$ regime at future colliders
- New Higgs production channel at e^+e^- colliders
 - Mono-Higgs from heavy neutrino decay
 - $-W^+W^-H$ from t-channel heavy neutrino exchange
- New Higgs decay channels
 - $-H \rightarrow \nu N/NN$: Constraints on Y_{ν} from LHC data, displaced vertices
 - LFV Higgs decays: complementary to other LFV searches, different dependence on seesaw parameters

Backup slides

Fine-tuning

We adopt here the idea of [Lopez-Pavon et al., 2015], where the tree-level and one-loop contributions cancel.

Evolution of m_3 as a function of the rescaling parameter Λ . Input masses and couplings where chosen to give $m_{\nu} = m_{\text{tree}} + m_{1-\text{loop}} = 0.046 \text{ eV}$ at $\Lambda = 1$. A deviation of less then 10^{-7} here, is enough to spoil the cancellation and contradict experimental limits.

Direct constraints from JHEP05(2009)030

Direct constraints from JHEP05(2009)030

Direct constraints from JHEP05(2009)030

Experimental precision on $Br(H \rightarrow VV)$

Channel	$R_{\gamma\gamma}$	R_{WW}	R_{ZZ}
Atlas	$1.17^{+0.27}_{-0.27}$	$1.08^{+0.22}_{-0.20}$	$1.44^{+0.40}_{-0.33}$
CMS	$1.14^{+0.30}_{-0.23}$	$0.72^{+0.20}_{-0.18}$	$0.93^{+0.29}_{-0.25}$
combined	1.15(27)	0.88(20)	1.11(30)

Currently best measured decay ratios $R_{VV} = Br(HH \rightarrow VV)^{exp}/Br(H \rightarrow VV)^{SM}$ from CMS

[Khachatryan et al., 2014, Chatrchyan et al., 2014a, Chatrchyan et al., 2014b] and ATLAS [Aad et al., 2013]. Taken from [Antusch and Fischer, 2015].

Future sensitivities to $Br(H \rightarrow VV)$

Branching ratio	ILC	CEPC	FCC-ee
$Br_{H \rightarrow WW}$	6.4	1.3	0.9
$Br_{H \to ZZ}$	19	5.1	3.1
$Br_{H \to \gamma\gamma}$	35	8	3.0
$Br_{e^+e^- \to h + \not E_T}$	11.0*	3.8	2.2

Estimated precision for the measurement of the Higgs boson branching ratios at future lepton colliders, for one year of running. The numbers are in percent, and taken from refs. [Baak et al., 2013, Bicer et al., 2014, Ruan, 2016]. *) Estimated value obtained from the FCC-ee estimate rescaled with the ILC luminosity. Taken from [Antusch and Fischer, 2015].

Renormalization procedure for the HHH coupling I

- No tadpole: $t_H^{(1)} + \delta t_H = 0 \Rightarrow \delta t_H = -t_H^{(1)}$
- Counterterms:

$$\begin{split} M_H^2 &\to M_H^2 + \delta M_H^2 \\ M_W^2 &\to M_W^2 + \delta M_W^2 \\ M_Z^2 &\to M_Z^2 + \delta M_Z^2 \\ e &\to (1 + \delta Z_e) e \\ H &\to \sqrt{Z_H} = (1 + \frac{1}{2} \delta Z_H) H \end{split}$$

• Full renormalized 1–loop triple Higgs coupling: $\lambda_{HHH}^{1r} = \lambda^0 + \lambda_{HHH}^{(1)} + \delta \lambda_{HHH}$

$$\frac{\delta\lambda_{HHH}}{\lambda^0} = \frac{3}{2}\delta Z_H + \delta t_H \frac{e}{2M_W \sin\theta_W M_H^2} + \delta Z_e + \frac{\delta M_H^2}{M_H^2} \\ - \frac{\delta M_W^2}{2M_W^2} + \frac{1}{2}\frac{\cos^2\theta_W}{\sin^2\theta_W} \left(\frac{\delta M_W^2}{M_W^2} - \frac{\delta M_Z^2}{M_Z^2}\right)$$

Renormalization procedure for the HHH coupling II

OS scheme

$$\begin{split} \delta M_W^2 &= Re \Sigma_{WW}^T(M_W^2) \\ \delta M_Z^2 &= Re \Sigma_{ZZ}^T(M_Z^2) \\ \delta M_H^2 &= Re \Sigma_{HH}(M_H^2) \end{split}$$

• Electric charge:

$$\delta Z_e = \frac{\sin \theta_W}{\cos \theta_W} \frac{\text{Re} \Sigma_{\gamma Z}^T(0)}{M_Z^2} - \frac{\text{Re} \Sigma_{\gamma \gamma}^T(M_Z^2)}{M_Z^2}$$

Higgs field renormalization

$$\delta Z_{H} = -\operatorname{Re} \frac{\partial \Sigma_{HH}(k^{2})}{\partial k^{2}} \bigg|_{k^{2} = M_{H}^{2}}$$

Next-order terms in the μ_X -parametrization

- Weaker constraints on diagonal couplings
 - \rightarrow Large active-sterile mixing $m_D M_R^{-1}$ for diagonal terms
- Previous parametrizations built on the 1st term in the $m_D M_R^{-1}$ expansion \rightarrow Parametrizations breaks down
- Solution: Build a parametrization including the next order terms
- The next-order μ_X -parametrization is then

$$\mu_{X} \simeq \left(\mathbf{1} - \frac{1}{2}M_{R}^{*-1}m_{D}^{\dagger}m_{D}M_{R}^{T-1}\right)^{-1}M_{R}^{T}m_{D}^{-1}U_{\text{PMNS}}^{*}m_{\nu}U_{\text{PMNS}}^{\dagger}m_{D}^{T-1}M_{R}$$
$$\times \left(\mathbf{1} - \frac{1}{2}M_{R}^{-1}m_{D}^{T}m_{D}^{*}M_{R}^{\dagger-1}\right)^{-1}$$

λ_{HHH} : Results for $Y_{\tau\mu}^{(1)}$

• Right: Full calculation in black, approximate formula in green

Well described at M_R > 3 TeV by approximate formula

$$\Delta_{\text{approx}}^{\text{BSM}} = \frac{(1 \text{ TeV})^2}{M_R^2} \left(8.45 \operatorname{Tr}(Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger) - 0.145 \operatorname{Tr}(Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger) \right)$$

• Can maximize $\Delta^{\rm BSM}$ by taking $Y_{\nu} \propto I_3$

