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1 Cosmological Constant Problem

Dark Clouds hanging over the two well-established theories

Quantum Field Theory⇐⇒ Einstein Gravity Theory

I first explain my view point on what is actually the problem.

We know the recently observed Dark Energy Λ0, which looks like a small

Cosmological Constant (CC):

Present observed CC 10−29gr/cm3 ∼ 10−47GeV4 ≡ Λ0 (1)

We do not mind this tiny CC now, which will be explained after our CC

problem is solved. However, we use it as the scale unit Λ0 of our discussion

in the Introduction.
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What is the true problem?
Essential point: multiple mass scales are involved!

There are several dynamical symmetry breakings and they are necessarily

accompanied by vacuum condensation energy (potential energy):

In particular, we are confident from the success of the Standard Model of

the existence of at least two symmetry breakings:

Higgs Condensation ∼ ( 200GeV )4 ∼ 109GeV4 ∼ 1056Λ0

QCD Chiral Condensation ⟨q̄q⟩4/3 ∼ ( 200MeV )4 ∼ 10−3GeV4 ∼ 1044Λ0

Nevertheless, these seem not contributing to the Cosmological Constant!

It is a Super fine tuning problem:

c : initially prepared CC (> 0)

c− 1056Λ0 : should cancell, but leaving 1 part per 1012; i.e., ∼ 1044Λ0

c− 1056Λ0 − 1044Λ0 : should cancell, but leaving 1 part per 1044; i.e., ∼ Λ0

c− 1056Λ0 − 1044Λ0 ∼ Λ0 : present Dark Energy
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c = initially prepared CC

654321, 098765︸ ︷︷ ︸
12 digits

4321, 0987654321, 0987654321, 0987654321, 0987654321× Λ0 ∼ 1056Λ0

c + VHiggs =

4321, 0987654321, 0987654321, 0987654321, 0987654321︸ ︷︷ ︸
44 digits

×Λ0 ∼ 1044Λ0

c + VHiggs + VQCD = present Dark Energy

1× Λ0 ∼ Λ0

Note that the vacuum energy is almost totally cancelled at each stage of

spontaneous breaking as far as the the relevant energy scale order.
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Contents

Part I: Scale Invariance is a Necessary Condition

Part II: Scale Invariance is Sufficient Condition

First part is the main part which is based on a simple observation on

the vacuum energy, and I explain that calculability of the vacuum energy

demands the scale invariance of the world.

Second part has many overlaps with my last year’s SI talk at Fuji-Yoshida.

My idea present there turned essentially be the same as proposed by the

following people prior to me,

M. Shaposhnikov and D. Zenhausern, Phys. Lett. B 671 (2009) 162

This is actually a very good paper, which I believe solves the CC problem.

I introduce you their scenario and point out the issues to be clarified more.
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Part I: SI is Necessary

2 Vacuum Energy ≃ vacuum condensation energy
People may suspect that there are “Two” origins of Cosmological Constant

(Quantum) Vacuum Energy ∑
k,s

1

2
ℏωk −

∑
k,s

ℏEk (2)

Infinite, No controle, simply discarded

↕

(Classical) Potential Energy

V (ϕc) : potential (3)

Finite, vacuum condensation energy

They are separately stored in our (or my, at least) memory, but actually, almost the same

object, as we see now.

We now show for the vacuum energies in the SM that

quantum Vacuum Energy = Higgs Potential Energy (4)
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Let us see this more explicitly. For that purpose, Consider

Simplified SM

Lr = ψ̄
(
iγµ∂µ − yϕ(x)

)
ψ(x) +

1

2

(
∂µϕ(x)∂µϕ(x)−m2ϕ2(x)

)
− λ

4!
ϕ4(x)− hm4. (5)

Effective Action (Effective Potential) is calculated prior to the vacuum choice.

(i.e., calculable independently of the choice of the vacuum)

Review:

W [J ] : generating functional of connected Green’s functions

Z = eiW [J ] =

∫
DΦ ei(S[Φ]+JΦ)

Γ[ϕ] : generating functional of 1PI vertex functions

Γ[ϕ] = W [J ]− J · ϕ

ϕ(x) ≡ δW [J ]

δJ(x)
→ δΓ[ϕ]

δϕ(x)
= −J(x)

V (ϕ) : effective potential

V (ϕ) = −Γ[ϕ(x) = ϕ]∫
d4x

(6)
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Calculating Formula:

L(Φ + ϕ) = L(ϕ) + ∂L(ϕ)
∂ϕ

Φ +
1

2
Φ
(
iD−1F (ϕ)

)
Φ + Lint.(Φ;ϕ) (7)

Γ[ϕ] =

∫
d4xL(ϕ) + i

2
ℏ ln Det

[
iD−1F (ϕ)

]
− iℏ

⟨
exp

(
i

ℏ

∫
d4xLint(Φ;ϕ)

)⟩
1PI

(8)

V [ϕ] = V0(ϕ) +
1

2
ℏ
∫

d4k

i(2π)4
ln det

[
iD−1F (k;ϕ)

]
+ iℏ

⟨
exp

(
i

ℏ

∫
d4xLint(Φ;ϕ)

)⟩
1PI

(9)

1-loop effective potential in the Simplified SM
Use dimensional regularization and Mass-Independent (MI) renormalization

L0 = Lr + δL

δL = Aψ̄iγµ∂µψ +
B

2
(∂µϕ)

2 − C yψ̄ϕψ − D

4!
λϕ4

− 1

2
(Em2 + δm2)ϕ2 − (F m4 +Gm2 +H) (10)
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ψ0 = Zψψ, ϕ0 = Zϕϕ, y0 = Zyy, λ0 = Zλλ, m
2
0 = Zmm

2, δm2
0 = Z−1ϕ δm2, h0 = Zhh,

1 + A = Z
1/2
ψ ψ, 1 +B = Zϕ, 1 + C = ZyZψZ

1/2
ϕ , 1 +D = ZλZ

2
ϕ,

1 + E = ZmZϕ, 1 + F = ZhZ
2
m, G = h2Zm, H = h4 (11)

In MI renormalization, renormalization conditions, e.g,

Γ
(2,0)
ϕϕ (k2,m2)

∣∣∣
k2=0,m2=0

= 0, ← automatic in DR (12)

∂

∂k2
Γ
(2,0)
ϕϕ (k2,m2)

∣∣∣
k2=−µ2,m2=0

= 1, ← drop 1/ε̄ in MS (13)

∂

∂m2
Γ
(2,0)
ϕϕ (k2,m2)

∣∣∣
k2=0,m2=µ2

= −1, ← drop 1/ε̄ in MS (14)

(1ε̄ =
1
ε − γ + ln 4π, ε = 2− n

2)

Z = Z
(
λ,

Λ

µ

)
: (independent of m) (15)

In MS

Z(λ, n) = 1 +
a(1)(λ)

ε
+
a(2)(λ)

ε2
+ · · · (16)
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The 1-loop effective potential in the Simplified SM:

V (ϕ,m2) =
1

2
m2ϕ2 +

λ

4!
ϕ4 + hm4 + V1-loop + δV

(1)
counterterms

V1-loop =
1

2

∫
d4k

i(2π)4
ln(−k2 +m2 +

1

2
λϕ2)− 2

∫
d4p

i(2π)4
ln(−p2 + y2ϕ2)

δV
(1)
counterterms =

D(1)

4!
λϕ4 +

1

2
(E(1)m2 + (δm2)(1))ϕ2 + (F (1)m4 +G(1)m2 +H(1))

(17)

Using the dimensional integration formula

µ4−n
∫

dnk

i(2π)n
ln(−k2 +M 2) = −Γ(−η)

(4π)η
(
M 2
)η
(µ2)2−η =

M 4

32π2

(
−1
ε̄
+ ln

M 2

µ2
− 3

2

)
.

η ≡ n

2
, ε ≡ 2− η, 1

ε̄
=

1

ε
− γ + ln 4π (18)

and, dropping the 1/ε̄ parts in MS renormalization scheme,

Γ
(4,0)

ϕ4
: D(1)λ =

3

16π2
λ2

2

1

ε̄
− 4!

16π2
g4
1

ε̄

Γ
(2,0)

ϕ2
: E(1)m2 =

λ

32π2
1

ε̄
m2, (δm2)(1) = 0 (19)

Γ(0,0) : F (1)m4 =
1

32π2
1

ε̄
m4, G(1)m2 = 0, H(1) = 0 (20)



11

[Note that, in dimensional regularization, all the dimensionful counterterms automatically

vanish:

δm2 = G = H = 0. ] (21)

Finally, we get finite renormalized 1-loop effective potential:

V (ϕ,m2) =
1

2
m2ϕ2 +

λ

4!
ϕ4 + hm4

+
(m2 + 1

2λϕ
2)2

64π2

(
ln
m2 + 1

2λϕ
2

µ2
− 3

2

)
− 4

(yϕ)4

64π2

(
ln
y2ϕ2

µ2
− 3

2

)
(22)

Note that the general 1-loop contributions are given by

V1-loop(ϕ) =
∑
i

±ni Fln(M
2
i (ϕ)), Fln(M

2) ≡ 1

2

∫
d4k

i(2π)4
ln(−k2 +M 2) (23)

But, this shows it’s nothing but Vacuum Energies: Zero-point osc. for boson and Dirac’s

sea negative energies.

1

2

∫
d4k

i(2π)4
ln(−k2 +M 2) =

M 4

64π2

(
−1
ε̄

+ ln
M 2

µ2
− 3

2︸ ︷︷ ︸
Coleman-Weinberg potential

)
. (24)
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To show this, evaluate the LHS as follows:

Fln(M
2)− Fln(0) =

1

2

∫ M2

0

dm2 ∂

∂m2

∫
d4k

i(2π)4
ln(−k2 +m2 − iε)

=
1

2

∫ M2

0

dm2

∫
d4k

i(2π)4
1

−k2 +m2 − iε

=
1

2

∫ M2

0

dm2

∫
d3k

(2π)3
1

2
√

k2 +m2

=

∫
d3k

(2πℏ)3

(
ℏ
2

√
k2 +M 2 − ℏ

2

√
k2

)
(25)

Note also that Fln(0) in the massless case vanishes in the dimensional regularization. If you

apply the dimensional formula to the last expression, you can also recover the original RHS

result.

3 Conclusions from these simple observation
We have shown that the equivalence between the (quantum) vacuum energies and (‘clas-

sical’) Higgs potential energy. From this simple observation, we can draw very interesting

and important conclusions:
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As far as the matter fields and gauge fields are concerned, whose mass comes solely from

the Higgs condensation ⟨ϕ⟩,

Their vacuum energies are calculable and finite quantities

in terms of the renormalized λ and m2 parameters!

Note that this is because that their divergences are proportional to ϕ4 and m2ϕ2. (At

1-loop, only ϕ4 divergences appear.)

However, the Higgs itself is an exception! The divergences of the Higgs vacuum energy

are not only m2ϕ2 and ϕ4 but also the zero-point function proprtional to m4. In order to

cancel that part, we have to prepare the counterterm:

h0m
4
0 = ZhZ

2
m hm

4 = (1 + F )hm4

F (1)h =
1

64π2
1

ε̄
. (26)

And the renormalized CC term hm4 is a Free Parameter. Then, there is no chance to

explain CC.

Thus, in order for the calculability of CC, we need m2 = 0, or

No dimensionful parameters in the theory ⇒ (Classical) Scale-Invariance
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Part II: Scale Invariance is Sufficient Condition

4 Scale Invariance solves the problem!

Our world is almost scale invariant: that is, the standard model Lagrangian is scale

invariant except for the Higgs mass term!

If the Higgs mass term comes from the spontaneous breaking of scale invariance at higher

energy scale physics, the total system can be really be scale invariant:

λ(h†h−m2)2 → (h†h− εΦ2)2. (27)

I introduce you here the scenario following the very good work,

M. Shaposhnikov and D. Zenhausern, Phys. Lett. B 671 (2009) 162

since it is essentially the same as mine, done prior to me and may be simpler than mine,

unfortunately. I will also point out the issues to be clarified more.
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4.1 Classical Scale Invariance

Suppose that our world has no dimensionful parameters.

Suppose that the effective potential V of the total system looks like

V (ϕ) = V0(Φ) + V1(Φ, h) + V2(Φ, h, φ)

↓ ↓ ↓
M ≫ µ ≫ m

and it is scale invariant. Then, classically, it satisfies the scale invariance relation :∑
i

ϕi
∂

∂ϕi
V (ϕ) = 4V (ϕ), (28)

so that the vacuum energy vanishes at any stationary point
⟨
ϕi
⟩
= ϕi0:

V (ϕ0) = 0.

Important point is that this holds at every stages of spontaneous symmetry breaking.

In the above potential V , we can retain only V0(Φ) when discussing the physics at scale

M , since h and φ are expected to get VEVs of order µ or lower. Then the scale invariance

guarantees V0(Φ0) = 0.
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If we discuss the next stage spontaneous breaking at energy scale µ, we should take

V0(Φ) + V1(Φ, h), and can conclude V0(Φ0) + V1(Φ0, h0) = 0.

Similarly, at scale m, we have the potential V0(Φ) + V1(Φ, h) + V2(Φ, h, φ), and can

conclude V0(Φ0) + V1(Φ0, h0) + V2(Φ0, h0, φ0) = 0.

This miracle is realized since the scale invariance holds at each energy scale of spontaneous

symmetry breaking.

For the help of understanding, we now write a toy model of potentials.

V0(Φ) =
1

2
λ0(Φ

2
1 − ε0Φ2

0)
2,

in terms of two real scalars Φ0,Φ1, to realize a VEV

⟨Φ0⟩ =M and ⟨Φ1⟩ =
√
ε0M ≡M1. (29)

ThisM is totally spontaneous and we suppose it be Planck mass giving the Newton coupling

constant via the scale invariant Einstein-Hilbert term

Seff =

∫
d4x
√
−g
{
c1Φ

2
0R + c2R

2 + c3RµνR
µν + · · ·

}
If GUT stage exists, ε0 may be a constant as small as 10−4 and then Φ1 gives the scalar

field breaking GUT symmetry; e.g., Φ1 : 24 causing SU(5)→ SU(3)× SU(2)× U(1).
V1(Φ, h) part causes the electroweak symmetry breaking:

V1(Φ, h) =
1

2
λ1
(
h†h− ε1Φ2

1

)2
,
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with very small parameter ε1 ≃ 10−28. This reproduces the Higgs potential when h is the

Higgs doublet field and ε1Φ
2
1 term is replaced by the VEV ε1M

2
1 = µ2/λ1.

V2(Φ, h, φ) part causes the chiral symmetry breaking, e.g., SU(2)L×SU(2)R → SU(2)V.

Using the 2 × 2 matrix scalar field φ = σ + iτ · π (chiral sigma-model field), we may

similarly write the potential

V2(Φ, h, φ) = 1
4λ2
(
tr(φ†φ)− ε2Φ2

1

)2
+ Vbreak(Φ, h, φ)

with another small parameter ε2 ≃ 10−34. The first term reproduces the linear σ-model

potential invariant under the chiral SU(2)L×SU(2)R transformation φ→ gLφgR when ε2Φ
2
1

is replaced by the VEV ε2M
2
1 = m2/λ2. The last term Vbreak stands for the chiral symmetry

breaking term which is caused by the explicit quark mass terms appearing as the result of

tiny Yukawa couplings of u, d quarks, yu, yd, to the Higgs doublet h; e.g.,

Vbreak(Φ, h, φ) =
1

2
ε2Φ

2
1 tr
(
φ†
(
yuϵh

∗ ydh
)
+ h.c.

)
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4.2 Quantum Mechanically

Is there Anomaly for the Scale Invariance?

Usual answer is YES in quantum field theory. If we take account of the renormalization

point µ, so that we have dimension counting identity(
µ
∂

∂µ
+
∑
i

ϕi
∂

∂ϕi

)
V (ϕ) = 4V (ϕ).

and, also have renormalization group equation (RGE):(
µ
∂

∂µ
+
∑
a

βa(λ)
∂

∂λa
+
∑
i

γi(λ)ϕi
∂

∂ϕi

)
V (ϕ) = 0

From these we obtain(∑
i

(1− γi(λ))ϕi
∂

∂ϕi
−
∑
a

βa(λ)
∂

∂λa

)
V (ϕ) = 4V (ϕ)

which replaces the above naive one:∑
i

ϕi
∂

∂ϕi
V (ϕ) = 4V (ϕ)



19

This shows the anomalous dimension γi(λ) is not the problem, but βa(λ) terms may be

problematic.

Still, if I assume the existence of Infrared Fixed Points: βa(λIR) = 0, then, I can prove that

the potential value V (ϕ0) at the stationary point ϕ = ϕ0 is zero at any µ. The vanishing

property of the stationary potential value V (ϕ) is not injured by the scale-inv anomaly.

Probably, however, it will not be sufficient to gurantee the vanishing CC.

Stationary point ϕ0 may be the trivial point ϕ0 = 0.

Non-trivial is the existence of the flat direction even after the quantum corrections are

included.

Shaposhnikov-Zenhausern’s New Idea is: SI exists even quantum mechanically.

Quantum Scale Invariance

・Englert-Truffin-Gastmans, Nuc. Phys. B177(1976)407.

・Shaposhnikov-Zenhausern, ibid

Extension to n-dimension keeping S.I. is possible by introducing dilaton field Φ →
NO ANOMALY.
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1. Usual dimensional regularization

λ (h†(x)h(x))2 → λµ4−n(h†(x)h(x))2 [h] =
n− 2

2

y ψ̄(x)ψ(x)h(x) → y µ
4−n
2 ψ̄(x)ψ(x)h(x) [ψ] =

n− 1

2
(30)

2. SI prescription Using ‘dilaton’ field Φ(x),

λ (h†(x)h(x))2 → λ [Φ(x)2]
4−n
n−2 (h†(x)h(x))2

y ψ̄(x)ψ(x)h(x) → y [Φ(x)]
4−n
n−2 ψ̄(x)ψ(x)h(x) (31)

This introduces FAINT but Non-Polynomial interactions ∝ ε = 2− n
2

Φ =Meϕ/M , ⟨Φ⟩ ≡M → [Φ(x)]
4−n
n−2 =M

ε
1−ε

(
1 +

ε

1− ε
ϕ

M
+ +

1

2
(
ε

1− ε
)2
ϕ2

M 2
+ · · ·

)
(32)

This scenario would give quantum scale invariant theory, which may realize the vanishing

CC.
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However, there still remain many points that should be clarified:

1. Non-renormalizable effective theory The non-polynomial interactions seem to

require higher and higher new counterterms.

⇒ Still needs to clarify the structure of the higher-order terms.

⇒ Unitarity?

2. Flat direction survives the quantum corrections?

V (Φ, h) = Φ4f (r) with r ≡ h/Φ.

Since


∂

∂Φ
=

∂

∂Φ
− r

Φ

∂

∂r

∂

∂h
= 0 +

1

Φ

∂

∂r

for (Φ, h) → (Φ, r = h/Φ), (33)

the initial flat direction r0 ≡ h0/Φ0 ̸= 0, Φ0 ̸= 0 remains iff

f (r0) = f ′(r0) = 0 are satisfied. (34)

This can be satisfied by two coupling constant freedom. Note that they can no longer

be satisfied if f (r) additionally depends on µ.

But C. Tamarit, JHEP12(2013)098 worries about fine tuning, which should be cleared.
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3. Running coupling constants? after VEV ⟨Φ⟩ ̸= 0 appears.

e.g., Chiral symmetry breaking scale in QCD:

Usually the coupling α3 ≡ g23/4π runs according to

µ
d

dµ
α3(µ) = 2b3 α

2
3(µ) → 1

α3(µ)
=

1

α3(M)
− b3 ln

µ2

M 2

→ ε2 =
Λ2
QCD

M 2
= exp

1

b3

( 1

α3(M)
− 1

αcr
3

)
. (35)

where αcr
3 = O(1) quantity like π/3.

Does this running α3(µ) really exist in quantum SI theory? → probably exists.

This should be proven more soundly. cf. C.Tamarit, ibid

α3(M) here is the initial gauge coupling, while M is the VEV M = ⟨Φ⟩.

Then, probably, α3(M) should be replaced by M -independent initial gauge coupling

αinit
3 , while the other M 2 should be replaced by the field Φ2. Then

Λ2
QCD

Φ2
= exp

1

b3

( 1

αinit
3

− 1

αcr
3

)
. (36)

and the QCD scale ΛQCD is always scaled with the dilaton VEV ⟨Φ⟩. Anybody has

ever shown this? → explains Hierarchy.
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4. Hierarchy and Effective Potential

This hierarchy should show up in the effective potential. And the effective potential

should be calculable prior to the spontaneous breaking.

So we suspect that we should be able to derive the effective potential of the Coleman-

Weinberg type like
(φ†φ)2

64π2

(
−b3 ln

φ†φ

Φ2
+

1

αinit
3

− 1

αcr
3

)
(37)

for the chiral sigma model scalar field φ whose VEV giving the QCD scale.

But no one has ever derived such an effective action.
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5 Other Problems
1. More sound proof, for the claim that

Quantum scale invariance persists by the SI prescription.

2. Gauge hierarchies; how do those potentials appear possessing tiny εi’s?

3. Global or Local scale invariance?

4. If global, What is ∃Dilaton? → Higgs ?

5. The fate of dilaton? → does it remain massless?

6. How is the present CC value Λ0 explained?

7. How does the inflation occur in this scale invariant scenario?

8. Thermal effects.

9. Construct scale invariant Beyond Standard Model.

10. (Super)Gravity theory with (local or global) scale invariance.


