Electroweak dark matter at future hadron colliders

Xing Wang University of Pittsburgh

SI 2018 @ Panshan, Tianjin Aug 17, 2018

with Tao Han and Satyanarayan Mukhopadhyay arXiv: 1805.00015

Introduction

Dark Matter and WIMP miracle

Introduction

- Dark Matter and WIMP miracle
- SU(2) doublet \tilde{H} or triplet \tilde{W}
- Only one free parameter: M_{χ}

• $\begin{cases} DM \text{ relic abundance} \\ thermal freeze-out} \end{cases}$

$$\Rightarrow \begin{cases} M_{\tilde{H}} \simeq 1 \text{ TeV} \\ \text{or} \\ M_{\tilde{W}} \simeq 3 \text{ TeV} \end{cases}$$

Introduction

- Dark Matter and WIMP miracle
- SU(2) doublet \tilde{H} or triplet \tilde{W}
- Only one free parameter: M_{χ}
- $\begin{cases} DM \text{ relic abundance} \\ \text{thermal freeze-out} \end{cases}$

$$\Rightarrow \begin{cases} M_{\tilde{H}} \simeq 1 \text{ TeV} \\ \text{or} \\ M_{\tilde{W}} \simeq 3 \text{ TeV} \end{cases}$$

• I-loop radiative mass splitting $\sim \mathcal{O}(100 \text{ MeV})$

Direct Detection

- Direct detection loop-suppressed for pure states.
 - No tree-level coupling to h for Wino/Higgisno.
 - No tree-level coupling to Z for Wino.
- Large SI cross section for Higgsino via Z, already excluded.
 - Pseudo-Dirac Higgsino. $\Delta m_{12} \gtrsim \mathcal{O}(100 \text{ keV})$
- Accidental cancellation @ I-loop

Indirect Detection

- Sensitive to the astro uncertainties (e.g. DM profile, propagation model)
- Complementary to collider searches.

Collider Searches

T. Han, S. Mukhopadhyay, XW, arXiv: 1805.00015

- Future hadron colliders
 - HL-LHC 14 TeV with 3 ab^{-1}
 - HE-LHC 27 TeV with 15 ab^{-1}
 - FCC/SppC 100 TeV 30 ab^{-1}

M. Low, L.T. Wang, arXiv: 1404.0682 M. Cirelli, et al. Xiv: 1407.7058

- Monojet
- Disappearing track
- Higher energies are very advantageous.

- One hard jet recoils against MET.
- Signal

 $\chi^0 \chi^0 / \chi^{\pm} \chi^0 / \chi^{\pm} \chi^{\mp} + \text{jets}$

• Dominant background:

 $Z(\nu\nu) + \text{jets}, \quad W(\ell\nu) + \text{jets}$

• Subdominant:

 $t\bar{t}, Z(\ell\ell) + jets, diboson, multi-jets$

• Systematics: $\lambda = 1 - 2\%, \ \gamma = 10\%$ arXiv: 1705.04664, 1711.03301 Significance $=\frac{S}{\delta B} = \frac{S}{\sqrt{B + \lambda^2 B^2 + \gamma^2 S^2}}$ 8

- One hard jet recoils against MET.
- Signal

 $\chi^0 \chi^0 / \chi^{\pm} \chi^0 / \chi^{\pm} \chi^{\mp} + \text{jets}$

• Dominant background:

$$Z(\nu\nu) + jets, W(\ell\nu) + jets$$

• Subdominant:

$$t\bar{t}, Z(\ell\ell) + jets, diboson, multi-jets$$

• Systematics: $\lambda = 1 - 2\%, \ \gamma = 10\%$ arXiv: 1705.04664, 1711.03301 Significance = $\frac{S}{\delta B} = \frac{S}{\sqrt{B + \lambda^2 B^2 + \gamma^2 S^2}}$ 9

- Madgraph 5 + Pythia 6.4.28 + Delphes 3
- MLM matching up to 2 jets
- Selection cuts:
 - MET, p_{T,j_1}, p_{T,j_2}
 - $N_{\text{jets}} \le 2$, $\Delta \phi_{j_1 j_2} < 2.5$
 - Lepton veto

\sqrt{s}	$ \mathbb{E}_T^{\min} [\text{GeV}] $	p_{T,j_1} [GeV]	p_{T,j_2} [GeV]	$p_{T,\tau} \; [\text{GeV}]$
14 TeV	650	300	30	30
$27 { m TeV}$	1800 - 2700	400	60–160	30
$100 { m TeV}$	4800-7000	1200	250 - 450	40

0

95% CL limit [GeV]	14 TeV	$27 { m TeV}$	$100 { m TeV}$	
Wino	190 - 280	530 - 700	1500 - 2000	
Higgsino	130 - 200	330 - 490	900 - 1370	

• Long-lived chargino decays inside the tracker

- We follow the 13 TeV ATLAS analysis to extract the signal efficiency.
- Selection cuts:

Systematics:

 $\lambda = 20\%, \ \gamma = 10\%$

- MET, $p_{T,j_1}, p_{T,j_2}, p_{T,\text{track}}$
- $\Delta \phi_{j,\mathrm{MET}} > 1.5$
- $0.1 < |\eta^{\text{track}}| < 1.9$
- Track isolation $\Delta R = 0.4$
- Track length 12 < d < 30 cm

\sqrt{s}	E_T [GeV]	p_{T,j_1} [GeV]	p_{T,j_2} [GeV]	$p_{T,\text{track}}$ [GeV]
14 TeV	150	150	70	250
27 TeV	400 - 700	400 - 600	140	400 - 700
100 TeV	1000 - 1400	700 - 1400	500	1000 - 1400

Background

- Various backgrounds
- Hard to estimate

ATLAS-CONF-2017-017

- We do a naive estimation
 - $f(p_{\rm T}) = \exp\left(-p_0 \cdot \log(p_{\rm T}) p_1 \cdot (\log(p_{\rm T}))^2\right)$
 - Scale according to $Z(\nu\nu) + jets$
 - Vary background from 20% to 500%.
- Systematics: $\lambda = 20\%, \ \gamma = 10\%$

⁽c) Electroweak channel high- $E_{\rm T}^{\rm miss}$ region

Background

95% CL limit [GeV]	14 TeV	$27 { m TeV}$	$100 { m TeV}$
Wino	500 - 900	1500 - 2100	4500 - 6500
Higgsino	200 - 300	450 - 600	1100 - 1550

• Shorter track length helps a lot !

• Other proposal:

R. Mahbubani et al, JHEP 1706, 119 (2017) H. Fukuda et al, PLB 781, 306 (2018)

Summary

- Wino/Higgsino dark matter are simple but well-motivated models.
- Collider searches are important to cover the relevant parameter space, which is complementary to the indirect detection.
- Mono-jet and disappearing track are powerful channels.
- The possible LHC high energy upgrade would significantly extend the reach of wino/Higgsino searches.

95%	Wino	Wino	Higgsino	Higgsino
C.L.	Monojet	Disappearing Track	Monojet	Disappearing Track
14 TeV	$280 \mathrm{GeV}$	900 GeV	$200 \mathrm{GeV}$	$300 {\rm GeV}$
27 TeV	$700 {\rm GeV}$	2.1 TeV	490 GeV	$600 {\rm GeV}$
100 TeV	2 TeV	$6.5 { m TeV}$	1.4 TeV	$1.5 { m TeV}$