What's new

- Rough optimization results
- \blacktriangleright Study difference theoretic tools and the effect of $\Delta\sigma$
- Questions and next to do

3

- 4 同 6 4 日 6 4 日 6

With $\mathcal{L} = 3.2 \text{ ab}^{-1}$, $E_1, E_2 \in [155, 165]$ GeV, the luminosity fraction $f \in [0, 1]$ $(\frac{\mathcal{L}_1}{\mathcal{L}_2})$, the scan steps are 0.1 GeV and 0.05 for $E_1(E_2)$ and f.

Figure: The distributions for Δm and $\Delta \Gamma$ from scan results.

For further study, the ΔM is required within (0.5, 4) MeV, and (1.5, 4) MeV for $\Delta\Gamma$. (the low end cuts is used to discard the very small number from the failed fit results.)

P. X. Shen, G. Li, C. X. Yu (NKU., IHEP.)

Precise measurement of W mass

March 26, 2018 2 / 13

Figure: The distributions of E_1, E_2 with and without the cuts on $\Delta M, \Delta \Gamma$

P. X. Shen, G. Li, C. X. Yu (NKU., IHEP.)

The relationships between ΔM ($\Delta\Gamma$) and the energy of data taking are shown below, the right two plots are the left twos with the cut: $E_2 \in (161.5, 163.5)$ GeV.

P. X. Shen, G. Li, C. X. Yu (NKU., IHEP.)

With the cuts: $\Delta M \in (0.5, 4)$ MeV, $\Delta \Gamma \in (1.5, 4)$ MeV, $E_1 \in (156, 168.5)$ GeV and $E_2 \in (161.5, 163.5)$ GeV.

The top right plot is within the range: $\Delta M < 1.2$ MeV. If the $\Delta\Gamma$ as importance as ΔM , $\Delta\Gamma + \Delta M$ will be minimum when $f \in (0.45, 0.55)$.

P. X. Shen, G. Li, C. X. Yu (NKU., IHEP.)

We can define the object function: $f(\Delta M, \Delta \Gamma) = F \Delta M + \Delta \Gamma$, the *F* represent the priority of optimization, and we just set F = 1 here. With $\mathcal{L}_{tot} = 3.2 \text{ ab}^{-1}$, $\epsilon P = 0.72$, $E_1 = 157.5 \text{ GeV}$, $E_2 = 162.5 \text{ GeV}$, f = 0.5:

	One point	Two points
ΔM (MeV)	0.59	0.96
$\Delta\Gamma$ (MeV)	1.4	2.22

Table: Statistic uncertainties of m_W and Γ_W with data taking at one and two energy points. When there is just one point, the data is taken at the maximum sensitive regions of m_W or Γ_W individually.

Optimize method (next to do)

The above optimization results are from fit method, we also can get the results by mathematic calculation:

$$\Delta \sigma_{1} = \frac{d\sigma_{1}}{dm} \Delta m + \frac{d\sigma_{1}}{d\Gamma} \Delta \Gamma = a_{1} \Delta m + b_{1} \Delta \Gamma$$

$$\Delta \sigma_{1} = \frac{d\sigma_{1}}{dm} \Delta m + \frac{d\sigma_{1}}{d\Gamma} \Delta \Gamma = a_{2} \Delta m + b_{2} \Delta \Gamma$$
(1)

then:

$$\Delta m = \frac{b_1 \Delta \sigma_2 - b_2 \Delta \sigma_1}{a_2 b_1 - a_1 b_2}$$

$$\Delta \Gamma = \frac{a_2 \Delta \sigma_1 - a_1 \Delta \sigma_2}{a_2 b_1 - a_1 b_2}$$
(2)

where, $\Delta \sigma_i = \frac{\sqrt{\sigma_i}}{\sqrt{\mathcal{L}_i \epsilon_i P_i}}$. We can do the optimization without lots of fittings.

CC11: the minimal gauge-invariant subset of Feynman diagrams

P. X. Shen, G. Li, C. X. Yu (NKU., IHEP.)

Pure QED corrections:

- ISR, photon radiation from incoming beams
- ▶ Coulomb, EM intercation of slowly moving W^+W^-
- ▶ FSR, photon radiation in W decays
- ▶ Non-factorizable, interconnections of various stages of the process

EW corrections:

- Connected with an effective scale of the W-pair production and decay process
- ▶ G_μ scheme, by parameterizing the cross section by the G_μ instead of the α

QCD corrections

- ▶ Affect the normalizations and event shapes of hadronic WW channels
- The so-called naive QCD correction

P. X. Shen, G. Li, C. X. Yu (NKU., IHEP.)

Corrections		YFSWW3	GENTLE	
Process		CC03 + LPA	CC11	
	ISR	\checkmark	\checkmark	
QED	Coulumb	\checkmark	\checkmark	
	FSR	\checkmark	X	
	NF	\checkmark	X	
EW		\checkmark	\checkmark	
QCD		\checkmark	\checkmark	

 $\Delta \sigma_{
m GENTLE} \simeq 2\%$, $\Delta \sigma_{
m YFSWW3} \simeq 0.5$ (0.7)%, 0.7% for 180 (170) GeV

https://arxiv.org/pdf/hep-ph/0005309.pdf

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

YFSWW3 is hard to calculate $\frac{d\sigma}{dm_W}$..., due to the uncertainty associated with MC integration.

Figure: Comparison between Born cross sections from Gentle (σ_B^0) and YFSWW3 (σ_B)

Here, the KorWan is semi-analytical code of YFSWW3, used to calculate the σ_{WW} at the Born level (just includes the ISR correction).

P. X. Shen, G. Li, C. X. Yu (NKU., IHEP.)

Precise measurement of W mass

March 26, 2018 11 / 13

$\Delta \sigma_{WW}$ (with Gentle)

$\Delta \sigma_{WW}$ (×10 ⁻⁴)	10	9	8	7	6	5	4	3	2	1
m_W shift (-MeV)	2.0	1.8	1.6	1.4	1.2	1.0	0.8	0.6	0.4	0.2

The statistic uncertainty of each fit result is about 6×10^{-3} MeV. The $\frac{\Delta m}{\Delta \sigma}$ is about -0.5 MeV/fb (at 162 GeV), which is consistent with the following figure.

Questions and next to do

- Optimize data taking with mathematic calculation, the results will be more stable.
- ► Need to take into account for the systematic uncertainties? *i.e.* $\Delta \sigma$, $\Delta \mathcal{L}$...

3

・ 何 ト ・ ヨ ト ・ ヨ ト