W Mass Measurement in CEPC

Presented by ¹Pei-Zhu Lai (賴培築)

Supervisor: ²Man-Qi Ruan, ²Gang Li, ²Bo Liu, ¹Chia-Ming Kuo ¹National Central University, Taiwan ²Institute of High Energy Physics, China EW Meeting

Mar 26, 2018

- Check the m_{reco} / m_{true} along the m_{true} (m_{qq}) by TProfile. Two approaches are used to reconstruct mass; one method is to use two jets, and another one is to use all particle flow objects (PFO).
- Fixed the wrong categorization problems.
- Compare the m_{jj} /m_{true} after two different calibration approaches to find the best one. One way is to calibrate using the energy and flavor dependent JES. Another way is to calibrate by each flavor dijet's invariant mass in ZZ process.
- The last mission in the Maarten's to do list. Study the ROC of b-/c- tagging.

m_{reoc jj} /m_{mcp} OR m_{All PFO} /m_{mcp} VS. m_{mcp}

- **The mean of m_{reco} / m_{mcp} is shown as a function of m_{mcp}.**
- The deviation is large in low mass region.
- The best one is s-quark around the Z mass region. No significant difference is seen in the case of W.
- All PFO has better performance in the high mass region.
- The ratio of m_{reco} / m_{mcp} for Z is within 1.15~0.85, and for W is within 1.3~1.

Pei-Zhu Lai (NCU, Taiwan)

m_{reoc jj} /m_{mcp} OR m_{All PFO} /m_{mcp} VS. m_{mcp}

■ ISR veto improves the performance a lot, and the light quark invariant mass is ok.

 $C \mathcal{E} \mathcal{P}$

m_{reoc jj} /m_{mcp} OR m_{All PFO} /m_{mcp} VS. m_{mcp}

■ Veto the low energy events. Therefore, the low mass region becomes worse.

CEP

Check the m_{reco} / m_{true} along the m_{true} (m_{qq}) by TProfile. Two approaches are used to reconstruct mass; one method is to use two jets, and another one is to use all particle flow objects (PFO).

Fixed the wrong categorization problems.

- Compare the m_{jj} /m_{true} after two different calibration approaches to find the best one. One way is to calibrate using the energy and flavor dependent JES. Another way is to calibrate by each flavor dijet's invariant mass in ZZ process.
- The last mission in the Maarten's to do list. Study the ROC of b-/c- tagging.

W->(ud, cs, us, cd) ($40 < m_W < 160$)

Calculate the value from the fitting results.

The number of cross generations decay is less than the same generation decay.

	W→ud	W→cs	W→us	W→cd
Entries	4355461	4348818	237663	236885
RMS	4.002	4.426	4,156	4.304
Mean	81.517	80.887	81.307	81.055
RMS/√N _w	0.0019	0.0021	0.0085	0.0088

m _w = 80.385	m _u = 2.2 MeV	m _c = 1.27 GeV	m _t = 173 GeV
	m _d = 4.7 MeV	m _s = 96 MeV	m _b = 4.6 GeV

- Check the m_{reco} / m_{true} along the m_{true} (m_{qq}) by TProfile. Two approaches are used to reconstruct mass; one method is to use two jets, and another one is to use all particle flow objects (PFO).
- Fixed the wrong categorization problems.
- Compare the m_{jj} /m_{true} after two different calibration approaches to find the best one. One way is to calibrate using the energy and flavor dependent JES. Another way is to calibrate by each flavor dijet's invariant mass in ZZ process.
- The last mission in the Maarten's to do list. Study the ROC of b-/c- tagging.

The boson mass resolution follows the decay product mass. The order is from b to u.
The boson mass scale follows the neutrino productivity of quark.

W || m_{reoc jj} /m_{mcp} VS. m_{mcp}

The boson mass resolution follows the decay product mass. The order is from b to u.
The boson mass scale follows the neutrino productivity of quark.

Calibration Workflow

Apply calibration to mreoc jj

Apply calibration to m_{reoc jj}

	Nominal Z→qq	Applied JES Z→qq	Applied BMS Z→qq
Entries	1672318	1672318	1672318
RMS	4.562	4.494	4.537
Mean	91.662	89.925	90.483
Mean/mz	1.00520	0.98615	0.99227

	Nominal W→qq	Applied JES W→qq	Applied BMS W→qq
Entries	9319000	9319000	9319000
RMS	4.173	4.108	4.178
Mean	81.245	79.303	79.277
Mean/mw	1.01069	0.98653	0.98621

Nominal one is the best.

■ Go back to check the JES calibration first. I want to know where is the reason. First, I will divide the energy and flavor to reconstruct mass.

- Check the m_{reco} / m_{true} along the m_{true} (m_{qq}) by TProfile. Two approaches are used to reconstruct mass; one method is to use two jets, and another one is to use all particle flow objects (PFO).
- Fixed the wrong categorization problems.
- Compare the m_{jj} /m_{true} after two different calibration approaches to find the best one. One way is to calibrate using the energy and flavor dependent JES. Another way is to calibrate by each flavor dijet's invariant mass in ZZ process.
- The last mission in the Maarten's to do list. Study the ROC of b-/c- tagging.

b-/c- quark Tagging

I want to do a plot like the pre-CDR, but the plot is strange. How to study the plot like pre-CDR?

Thus, I applied the number from the Dr. Gang Li. B-tagging < 0.9 and efficiency is 95%. C-tagging < 0.5 and efficiency is 60%.</p>

CEPC

Apply typical b-/c- tagging mreoc jj

■ Both jets are required b-jet tagging score < 0.9 and c-jet tagging score < 0.5.

Pei-Zhu Lai (NCU, Taiwan)

Apply typical b-/c- tagging mreoc jj

	Z→qq(uds)	Z→qq(uds) γ veto	Z→qq(uds) γ & cosθ veto
Entries 54.7%	915265 <mark>92</mark> .	6% 847947 67	4% 572112
RMS	4.543	4.526	4.405
Mean	91.871	91.805	91.822
RMS/√Nz	0.0047	0.0049	0.0058

	W→qq(uds)	W→qq(uds) γ veto	W→qq(uds) γ & cosθ veto
Entries 59.4%	5454873 <mark>91.</mark>	<mark>9%</mark> 5015740 <mark>5</mark> 9.	<mark>9%</mark> 3007990
RMS	4.141	4.132	4.005
Mean	81.304	81.267	81.362
RMS/√Nw	0.0018	0.0018	0.0023

■ These plots present the state of the boson mass resolution at CEPC because these approach can be reality.

- The linearity of m_{jj} /m_{mcp} as a function of m_{mcp} in the case of Z and W are different. The linearity performance of Z is changing with flavor, and the less flavor dependence for W.
- From the Z plots, the heavy jet is our major target to calibrate and try to calibrate the W boson scale.
- The number of cross generations decay is less than the same generation decay in the W decay.
- I need to check the JES calibration to figure out the problems.
- The Z and W mass distribution are present in the reality way. The selection can be applied in the future.

Back up

Red line is for b-jet, blue line is for c-jet, and black line is for light-jet.

- According to left plot, if want to reject b-jet, the score is recommended less than 0.9; if want to select b-jet, the score is recommended greater than 0.8.
- According to right plot, if want to reject c-jet, the score is recommended less than 0.6; if want to select c-jet, the score is recommended greater than 0.4.

