KVI Front-End Electronics **G** and Feature-Extraction Algorithm for the PANDA Electromagnetic Calorimeter

<u>M. Kavatsyuk</u>, E. Guliyev, P.J.J. Lemmens H. Löhner, T.P. Poelman, G. Tambave

for the PANDA collaboration

KVI, University of Groningen, Groningen, The Netherlands

- Sampling ADC readout
- Precise timing of the pulse
- Energy resolution
- High-rate capability

KVI AntiProton Annihilation at DArmstadt (PANDA)

PANDA spectrometer employs fixed target and cooled antiproton beam:

- momentum range
- Luminosity:

PANDA physics goals:

- Hadron spectroscopy up to charm
- Structure of nucleons

PANDA detector is a triggerless system:

 Each subdetector is selftriggered 1.5 GeV/c to 15 GeV/c $10^{31} - 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

groninge

Electromagnetic Calorimeter (EMC)

<u>Requirements summary:</u>

- Large dynamic range for photons (1 MeV 10 GeV)
- High energy resolution ($\leq 1\% + (\leq 2\%)/\sqrt{E}$)
- High counting rate capability (up to 500 kHz per channel)

Construction summary:

- EMC consists of ~ 16000 PWO-II crystals operated at -25°C
- Barrel and backward end-cap:
 - Each crystal equipped with two Large Area Avalanche Photo Diodes (LAAPD) 14×6.8 mm² sensitive area each
- Forward end-cap:
 - Each crystal read out by one Vacuum Photo Triode/Tetrode (VPT)

EMC Preamplifiers

Barrel

APFEL ASIC,

KVI

GSI design (two-channel, dual-range, ASIC, <u>built-in shaper:</u> 240 ns peaking time, ~800 ns total pulse-length)

End-cap

Low Noise low Power (LNP),

Basel design (one-channel, single-range, discrete-component, non-shaped output: 25 µs discharge constant)

Digitizer module:

- Consists of Sampling ADC (SADC) and feature-extraction module (FPGA/ASIC-based)
- <u>Has to be low-power</u> (placed inside the calorimeter volume)

Experimental Setup

- Measurements are done using SADC (14 bit, 50 MHz) directly coupled to the preamplifier
- 10 μs long traces are stored for each event
- Traces are analysed in software
- VHDL implementation is in the testing phase

"Proto60" - EMC prototype of 60 crystals

(SADC readout of 3×3 crystals matrix)

Proto60 design:

- PWO crystal shape: part of the Barrel EMC
- One LAAPD per crystal
 - (10×10 mm²)
- LNP preamplifier

groning

Experimental Setup: Proto60

Main goals of Proto60 test experiments: (Front-end electronics issues)

- Measure achievable energy and time resolution
- Develop and test the performance of featureextraction algorithm
- Test high rate capability up to 500 kHz
- Based on the measurements estimate the resulting EMC performance

KVI Triggering Threshold and Energy Resolution

Noise level as a function of the smoothing length

 $\frac{\text{Requirement:}}{\sigma/\text{E}} = \le 1\% + (\le 2\%)/\sqrt{\text{E}}$ almost fulfilled

EMC will have two times larger photosensor than "Proto60" $\rightarrow \sim \sqrt{2}$ improvement expected

Smoothing:

- decreases noise level
- increases pulse length pileup correction needed

Energy resolution (3x3 crystals) measured using high-energy tagged photons

Time Resolution using Sampling ADC readout

Time resolution as a function of energy deposition (sampling rate 50 MHz – 20 ns)

KVJ

It is possible to achieve time resolution much (×20) higher than SADC sampling rate Time-stamp is generated using <u>digital implementation</u> of Constant-Fraction Discrimination (CFD)

Time-resolution measurement:

- Proto60 set-up
- Tagged photons are shot between two PWO crystals to achieve two ~ equal energy depositions
- Time-difference between two crystals is used to derive time resolution

Conclusions

- SADC readout of the PANDA EMC allows to achieve design goals:
 - Large dynamic range (1 MeV 10 GeV)
 - Low trigger threshold (~1 MeV)
 - High time resolution (<1 ns for E_{γ} >80 MeV)
 - Improved performance at high counting rates (130 kHz \rightarrow 330 kHz, without pile-up correction)
- The "digital CFD" produces time stamps with much higher (×20) precision than SADC sampling rate
- The feature-extraction algorithm is implemented in VHDL for the on-line SADC data-processing
- Development of simple pile-up correction algorithm is in advanced stage

LNP discrete-component preamplifier: W. Erni, M. Steinacher, Univ. Basel, in PANDA TPR, Feb. 2005. APFEL ASIC preamplifier: P. Wieczorek, H. Flemming, GSI report (2007) 30.

Time (µs)

Pulse Processing (Precise Timing)

KVI

Time stamp: zero-crossing (linear regression)

Precise timing:

- more accurate than the SADC sampling rate
- Constant Fraction Discrimination (CFD) is used

Analogue-like implementation:

 $CFD(n) = MWD(n-d) - R \cdot MWD(n)$

- Delay d = signal rise time
- Fraction R to select most linear part of the signal leading edge
- * *N* number for the linear regression
- * Symmetry around zero level

university o groningen