

Test beam studies for a Highly Granular GRPC Semi-Digital HCAL

Vincent Boudry

LLR, École polytechnique (on behalf of the CALICE collaboration)

*Calor 2010 IHEP, Beijing May 14*th, 2010

Motivation

Highly Granular GRPC Semi-Digital HCAL

Particle Flow Based

- 1×1 cm² × 48 layers
- Imaging calorimety
 - Tracking in calorimeter
 - Energy loss recovery (see Henri's talk)

Gaseous calorimetry

- Lower sensitivity to n
 - Narrow showers (99% of 100 GeV π in 70×70cm²)
 - Less fluctuations (wrt H containing con

GRPC's

- Cheap
- Simple
- Reliable
- Large uniform surface (calibration of 70M ch.)

2 bits per cell

- Simplified electronics
 - reduced cost
 - less heat
- Improvement of energy rec. at High E.

Vincent.Boudry@in2p3.fr

Motivation

- Check the elements for a Cubic meter project (I. Laktineh's talk)
 - 40 layers of 1×1m²
- Check critical elements for the ILD detector
 - Semi-Digital Energy reconstruction
 - counting $\rightarrow \epsilon$ and multiplicity per track
 - ◆ 70 MCh → uniformity of detector
 - ▶ ILC mode (bunch train @ 5 Hz) \rightarrow auto-trigger + local storage
 - Noise should be controlled
 - Rates

 IPNL (France): M. Bedjidian, C. Combaret, G. Grenier, N. Lumb, I. Laktineh, R. Kieffer, M. Vander Dockt
LLR (France): K. Belkadhi, V. Boudry, D. Decotigny, M. Ruan
CIEMAT (Spain): M-C. Fouz, J. Puerta Pelayo
CP3 (Belgium): E. Cortina, S. Manai
FST (Tunisia): K. Manai
LAL-Omega (France): F. Dulucq, N. Seguin-Moreau, G. Martin-Chassard, Ch. de la Taille
TSINGHUA (China): Y. Wang, W. Ding
Vincent.Boudry@in2p3.fr GRPC TB results – Calor 2010 – 12-19 mai 2010, IHEP, Beijing

Glass Resistive Plate Chamber

Prototypes

Chambers

- ► Gas:
 - 93% TFE \rightarrow 8 ionisation/mm
 - 5% IsoButane (γ quencher)
 - 2% SF6 (e quencher)
- Chambers:
 - ♦ 33.55×8.35 cm²
 - Float glass
 - Graphite, Licron, Statguard
 - Semi-conductive glass (Tsinghua U.)
 - Licron, Statguard
 - 1×1m²
 - Float glass
 - Colloidal Graphite coated (1-2 MΩ/□)

	2				E
Ē	alorin	notor	for		
1 10		neter	101	LU	

Coating	Resistivity [MΩ/□]
Graphite	0.4
Statguard	2
Licron	20

Electronics: HarDROC v1 (Hadronic Rpc Detector Read Out Chip)

- AMS SiGe 0.35µm, 16 mm²
- 64 channels
- Digital/analogue output
- 2 independent thresholds
- low consumption
 - \sim ~7 μ W/ch with 0.5% Duty Cycle
 - Power pulsing
- **Digital memory**
 - 128 events
 - ASIC ID (8b), BC ID (24b), hits
- Large gain range (6bits)
 - Channel wise
- X-talks < 2%
- Threshold ≥ 10 fC

Check Ch. de la Taille presentation

6

Mini DHCAL

- 8-layer, 800 µ thick PCB buried and blind vias x-talk <0.3 %
- 4 hardroc chips
- Readout FPGA → USB
- 8×32 pads detector

Acquisition modes :

With auto-triggering a) Train (ILC mode) (sync @ start)

b) External trigger : cosmic rays & test beam (sync @ stop)

Data output: digital and analogue Vincent.Boudry@in2p3.fr

GRPC TB results – Calor 2010 — 12-19 mai 2010, IHEP, Beijing

The 1 m² electronics

DIF (Detector InterFace)10-layer board (6 for signals)

• Designed for the future DAQ of the CALICE collaboration

ASU (Assembly Single Unit)

- 8-layer board
- 500×33.3×1.2 mm³
- Connections between adjacent PCB

Acquisition Software

based on Labview & XDAQ USB readout

1 m² of equipped detect CAL

60

DAQ Schematic view

Gain correction

Beam tests

	July/August	November	
2008	Mini sDHCAL	Mini sDHCAL	
	340k triggers 3-12 GeV Pions PS@CERN	<i>65k triggers</i> 6 GeV Pions PS@CERN	
	June July	August	
2009	Mini sDHCAL + 1 M ²	Mini sDHCAL + 1 M ² with Absorber	
	361k trigger 3-12 GeV Pions PS@CERN	364 <i>k triggers</i> 10-150 GeV Pions&Muons SPS@CERN	

Vincent.Boudry@in2p3.fr GRPC TB results – Calor 2010 — 12-19 mai 2010, IHEP, Beijing

Time Distribution Asic 1

First event

Number of Hits

102

Time reconstruction

Acquisition

1) Events are recorded in ASICs with corresponding time, channel ID & thresholds (auto-trigger) 2) Memory full \rightarrow Reset of Board 3) Ext. Trigger from scintillators: \rightarrow stop all boards & R/O

Isolated hit Asic N° Hits in time Trigger event (noise) 12 10 -300 -200 -500 -400 -100 Time to trigger ^{µs}

2116

Trigger

Time structure:

unfolded from Ext. Trigger time backward

Time reconstruction

- Hits belonging to the same event have $|\Delta t|$ <200 ns; selection criteria for tracks reconstruction
- Identical to ILC mode (trains of ~3000 BC with Δt ~ 400 ns)

Noise & signal

Tracks Reconstruction

- Tracking method:
 - 3 RPC used as trackers
 - Average position used to build a track
 - Search hits in the studied layer around the expected impact
- Multiplicity ≡ Number of cells around track when the chamber responded (≥1)

Event Selection:

- Last Event
- or Train
 - |∆t|<200
 - t>First Event in every chamber
- ≥1 hit per selection layer
- $\Delta X \& \Delta Y = \pm 1$ cm on all layers

Layer1 Layer2 Layer3 Layer4

Mini DHCAL: HV Scan

- DAC's Thresholds: lower 165 fC / higher 450fC
 - \rightarrow Efficiency between 80 and 98%
- > Lower multiplicity is preferred.

Plateau: 7.2 — 8 kV

- → Best ratio multiplicity/efficiency: around 7.4 kV
- The LICRON coated detector shows best performances:

→ lowest multiplicity and very good efficiency

- Multiplicity moving as expected => lowering as threshold increases.
- Efficiency decreasing down to 80% at 1.1 pC threshold.
- Will be used to model the response

Uniformity between chamber

Vincent.Boudry@in2p3.fr GRPC TB results – Calor 2010 — 12-19 mai 2010, IHEP, Beijing

Calorimeter for ILC

Uniformity of response

14.59 + 1.36

1.572 ± 0.015

10 58 1 1 1

10.11 ± 0.0

10.43 ± 0.92

1.732 ± 0.021

0 2/94 + 0 0190

1.635 ± 1.020

0 2311+ 0 0196

17021108

0.2159 1 0.019

Mean

tiplicity Inver 3 Proj2

Map Multiplicity layer 4 Proi2

Signa

0 1936 ± 0 0159

Efficiency_

- Full train reconstruction ($\rightarrow \times 10$ in statistics)
- Global efficiency spread (⊃ statistics [25k evts] & defaults) ~ 3%
- Multiplicity spread in a chamber ~ 0.2 (\supset borders & fish line)
 - ► ≤3% between chambers

Vincent.Boudry@in2p3.fr GRPC TB results – Calor 2010 — 12-19 mai 2010, IHEP, Beijing

Map Multiplicity layer 1

Map Multiplicity laver 2

Vap Multiplicity layer 3

Map Multiplicity layer 4

Systematic Effects

Fish line between the two plates

Fish line replaced by ceramic balls to reduce contact surface for 1m²

High rate areas (19 kHz/cm²)

Efficiency map RUN 179

Beam profile

Efficicency Stability

- Low number of inefficient cells
- Constant over time.

Angle dependance

HV = 7.4 kV Thr = 165 fC Graphite chambers

- No effect seen from angle
 - Ease reconstruction of tracks in calorimeter
 - in showers, barrel and endcap
- Multiplicity to be checked

Noise evolution

- Noise mainly near Fish line (& borders)
 - Should improve largely with large chamber equipped with balls (~1/100 cm²)
 - Stability with time under studies

Semi conductive GRPC

- Semi-conductivite glass [10¹⁰ Ω/cm] provided by Tsinghua University:
- 2 chambers with 32×8 pads:
 - thin: 1.1 mm at both side + Licron coating
 - thick: 1.1mm on cathode + 0.83 mm at readout + Statguard coating

 Good efficiency at high event rate (>10kHz/cm²), Classical glass has significant efficiency drop @ rate > 0.1—1kHz/cm²

1 m² : beam profile

Some issues (solved)

Some noise in the HV connector region

Board2DLev1

Electric connections

Beam profile in 1 m2 chamber

M²: cosmic test bench

Small set-up (mini-DHCAL) used as tracking device for the large chamber

M²: Efficiency and Multiplicity (cosmics)

3

- Area: 1

Area: 2

- Area: 3

3

4

7

7.5

correction

beam tests)

small chambers

10 0

6.5

8

Conclusions & perspectives

- A Semi-Digital GRPC Hadronic Calorimeter with embedded readout is a very promising candidate for future linear colliders experiments
- Main critical components checked on small chambers
 - ▶ a High efficiency (95%) and low multiplicity (1.6)
 - ► angular response,
 - Uniformity of efficiency & multiplicity,
 - ► Noise
- Semi-conductive glass RPC show promising performances
- Next:
 - Two additional large RPCs being assembled
 - Two scheduled beam tests:
 - May'10: 2 weeks PS beam
 - Sept'10: 11 days SPS beam

Test with CO₂ gas

- Shallower raise as with Isobutane
- wrt to standard GRPC wider distribution from the thick semiconductive glass

- Isobutane
 - inflammable
 - Might be banned for large Detector

