Electromagnetic Calorimeter Upgrade for Belle2

XIV International Conference on Calorimetry in High Energy Physics

Beijing, China, 10–14.May.2010

中村 勇/高エネルギー研

SuperKEKB Collider

□ Higher Inst. Luminosity (×40 KEKB)

- Small Beam
 - ◊ 1/20 $β_v^*$ (5.9/5.9 ⇒ 0.27/0.41 mm)
 - low emittance beam
- ×2 Higher Current $(1.6/1.2 \Rightarrow 3.6/2.6A)$
 - ♦ 50% more bunches
 - ◊ 50% more bunch current

The SuperKEKB

- □ Inst. Lumi. $\Rightarrow 8 \times 10^{35} / \text{cm}^2 \text{s or}$ 800/nb/s
- □ Int. Lumi. \Rightarrow 50 ab⁻¹

The Belle2 Detector

Same or better performance under,

□ 10–20× background

- Touschek
- Radiative bhabha
- □ Trigger Rate ~20 kHz

Vertexing

- 2 layers DEPFET Pixel (1cmφ beampipe)
- 4 layers Double Sided Silicon Strip

Tracking

• smaller cell drift chamber

PID

- Time of Propergation Cherenkov
- Aerogel RICH
- **Calorimeter**
 - Waveform Readout
 - Faster Crystal in Endcaps
- $\Box Muon and K^0_L$
 - Scintillator strip + MPPC

The Belle Calorimeter (1)

Requirement to the Calorimeter

- Detection of γ and π^0
- Good Energy Resolution from Low *E* \$ 10 MeV to 10 GeV
 - $\diamond \sigma$ has linear effect for some physics
- Hermeticity for final state with *v*
- Rate resistance

□ 8736 CsI(Tl) Crystals

- 5.5×5.5×30 cm³
- 6624(B)+1152(FWD)+960(BWD)
- $12^{\circ} \leftrightarrow 155^{\circ}$
- $\lambda = 560 \text{ nm}/\tau = 1.3 \ \mu \text{sec} \text{ (Slow)}$
- 50000 p.e./MeV (No stochastic term)
- 98 Different Shapes
- Read out by two PIN photodiode (Hamamatsu S2744-08)

The Belle Calorimeter

The Belle Calorimeter (2)

- Preamplifier (Charge Integration)
- Two Shapers
 - ♦ 1 μ sec for *E* measurement, 0.2 μ sec for Trigger
- *Q* → *T* Translation, LeCroy MQT300A (12 bit×3 ranges)
 ◊ 16ch/Board (TKO)
- Recorded by FastBus TDC, LeCroy 1877S (16 bit, C.Start)
 - 96ch/Board (5 Crates), 3 VME Systems
 - \diamond Readout Deadtime (~ 30 μ sec)
- Energy information Only, no Timing

The Belle Calorimeter (3)

One dead channel (bias circuit broken)

- □ Light output decreasing 5–10%
- Dark current increasing
 - mostly from neutrons
 - ~ 10^{11} neutron/cm² fluence
 - 1–4 Gy γ-ray dose

The Belle Calorimeter (4)

- Energy deposite in Random Event: 0.5 MeV/Crystal or 3 GeV/ECL
- □ "Probably" proportional to Beam current
- \square × 3–10 background will be rough estimation
- □ Fine segment in time will be necessary

Upgrade Plan

- □ Expected Situation @ 8×10³⁵
 - Trigger Rate as high as 20 kHz
 - ×10? Background

Solutions

- Pipelined read out
- Waveform sampling (Timing Info.)
- Faster Crystal

Restrictions

- Budget (several 億円, at most)
- Human Resources
- Barrel Replacement Impossible

Decided so far

- DAQ part will be upgraded
- Crystal replacement postponed

Simulated Timing Distribution

ECL Upgrade Plan – DAQ

- □ Faster Shaping Time $1\mu s \rightarrow 0.5\mu s$
- □ Waveform Sampling with 18 bit 2MHz ADC
- On board FPGA for Waveform fitting
- Collector Board to marge data upto 12 Shaper/ADC/DSP board
- □ common I/O Collector ⇔ FINESSE for Data/Parameter/Firmware transfar
- □ Factor ~7 reduction of background

Status – TKO –

- □ was build when TKO was the option
 - production by 豊伸電子
 - WF part is the same as VME version
 - Trigger part same as OLD shaper
- WFA done in the backend
- □ Eight set of boards installed in BWD
 - Test with real experiment
- □ Real data taking from Summer 2009
 - Energy resolution as good as MQT board
 - Timing analysis on going

TKO Shaper Prototype

Energy Reconstructed

Status – VME –

VME readout board

- 2nd prototype delivered (Sep.2009)
- WFA done in FPGA on board
- Analog sum for Trigger signal
- connection to Collector/FINESS implemented
- Collector Board
 - 1st prototype delivered (Dec.2009)
 - recieve signal from upto 12 boards
 - can generate calibration signal
 - temporary FiberIO Implemented
- Boards being tested

VME Shaper Prototype

Collector Prototype

Faster Crystal

Not approved yet

- Crystals too expensive
- less background at the beginning
- more simulation required
- Continue R&D

Baseline is CsI(Pure) + Phototube

- 2112 CsI(Pure) crystals with same geometry
- $\tau = O(10)$ ns, $\lambda = 310$ nm, ~1/10 L.O.
- 2" short PMT (Hamamatsu)
- Fast Shaping (30 ns)
- 3×12bit FADC/42MHz sampling

Other Options

- CsI(Pure) + APD
- BSO + APD
- PWO2 + APD

SuperKEKB/Belle2

- 800/nb/s (40×KEKB)
- 50 /ab (50×KEKB)
- ~ 10× background
- Trigger Rate ~ 20 kHz
- Same or Better detector performance in Higer background

ECL DAQ upgrade

- Waveform Analysis (0.5 μ s)
- Pipelined Readout
- Factor 7 Improvement
- Crystals R&D
 - CsI(Pure) + Phototube + WFA (30 ns) promissing
 - Other Crystals (BSO, PWO2) in progless

