Commissioning of the calorimetry in the ATLAS tau trigger system

STORING TO THE PROPERTY

Anna Sfyrla (CERN) - for the ATLAS Collaboration

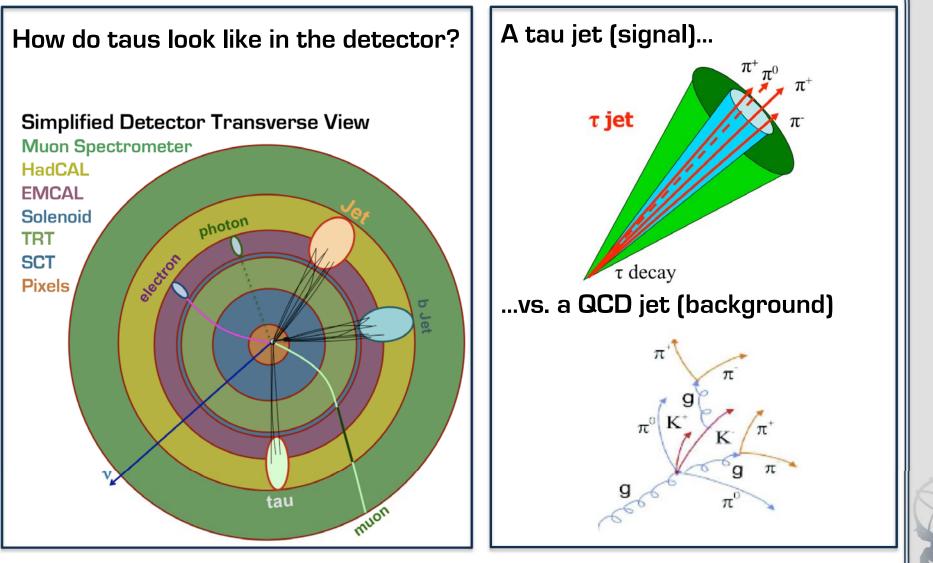
CALOR 2010 Beijing, China

Tau Trigger - Motivation

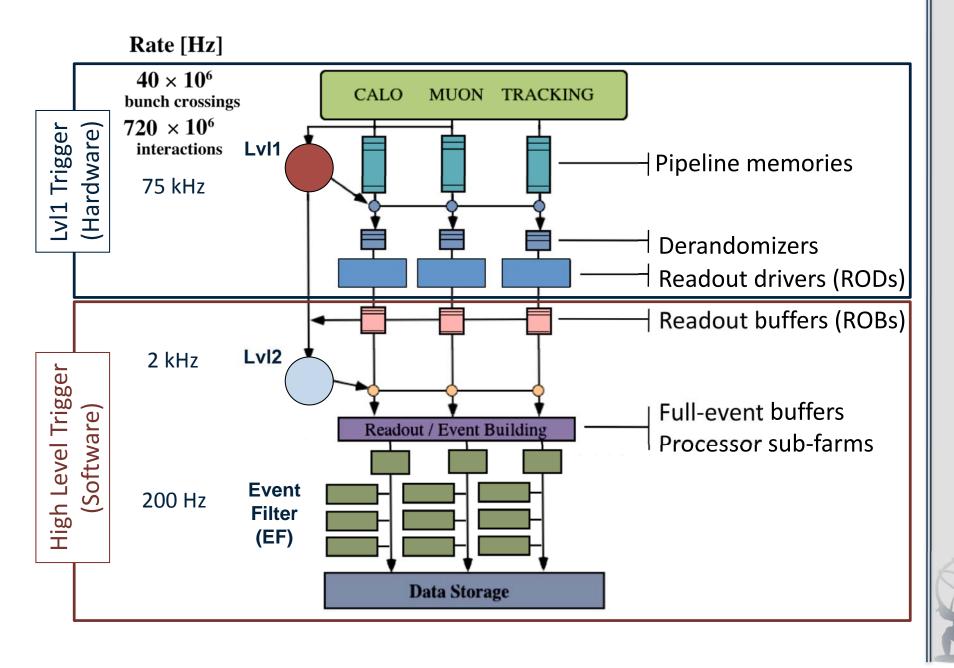
• Why are we interested in tau leptons?

- tau leptons are the heaviest of the known leptons (m_{tau} ≈ 1.8 GeV), and are key signatures in BSM-searches, e.g. SUSY with a light tau-slepton, charged Higgs, etc.
- identifying taus, we increase sensitivity to measurements and searches, when leptonic final states are involved.

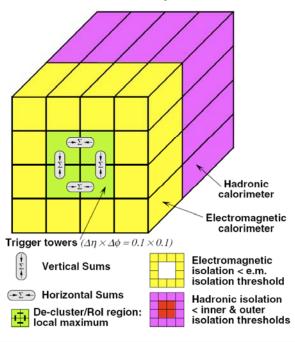
• How can we detect taus?


- they have multiple decay modes; the leptonic taus are selected through electron or muon triggers, the hadronic taus through dedicated tau triggers.
- they generate isolated deposition of energy in the calorimeter.

Tau Decay Mode			B.R.
Leptonic		$\tau^{\pm} \rightarrow e^{\pm} + v + v$	17.8%
		$\tau^{\pm} \rightarrow \mu^{\pm} + \nu + \nu$	17.4%
Hadronic	1-	$ \tau^{\pm} \rightarrow \pi^{\pm} + v$	11%
	prong	$\tau^{\pm} \rightarrow \pi^{\pm} + \nu + n\pi^0$	35%
	3- prong	$\tau^{\pm} \rightarrow 3\pi^{\pm} + v$	9%
		$\tau^{\pm} \rightarrow 3\pi^{\pm} + v + n\pi^0$	5%
Other			~5%

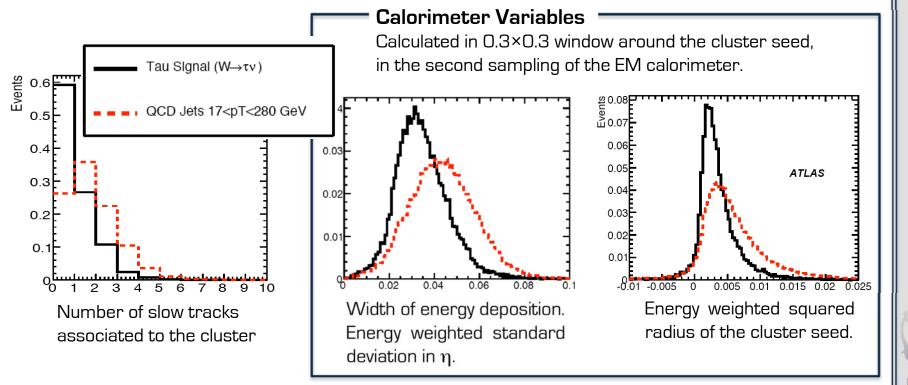

2

Tau Trigger - Implementation


• What we need to keep in mind when developing the trigger tau identification:

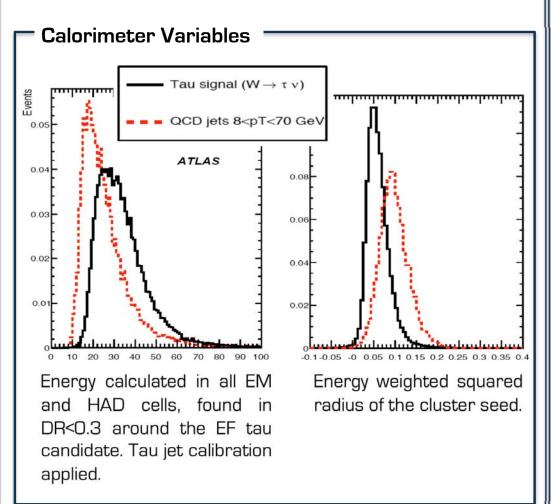
The ATLAS Trigger System

- The Lvl1 Tau Trigger -
- Uses trigger tower of size 0.1×0.1 in $\eta \times \varphi$ space.
- Local EM (and HAD) cluster maximum is identified in a 0.2×0.2 region.
- \bullet Total $E_{\rm T}$ in EM (and HAD) isolation ring < isolation threshold.
- A maximum of 8 different tau thresholds are allowed, with or without isolation requirements.

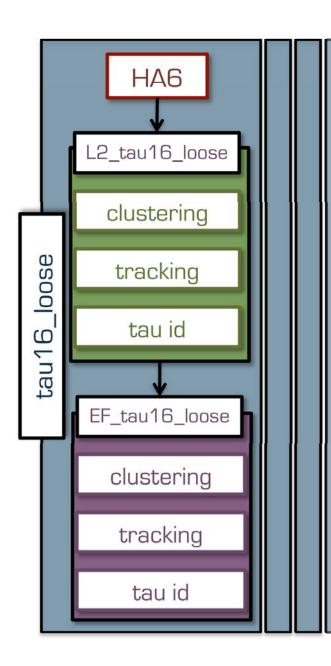


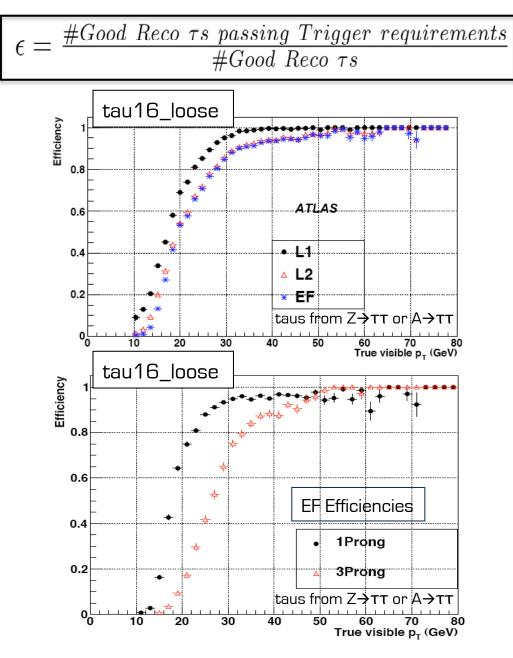
Taus at Lvl1

- Calorimeter Trigger at Lvl1 —
- Calorimeter input at Lvl1 comes from both calorimeters, electromagnetic and hadronic, within |η|<2.5.
- At Lvl1, we look for high-E_T objects (electrons, photons, taus decaying to hadrons, jets) and events with large MET or large total transverse energy.
- Only the detector Regions of Interest (Rols) are fowarded to the Lvl2.


Taus at Lvl2

- The Lvl2 tau reconstruction starts from the Lvl1 Region of Interest.
- Builds a cluster with its initial center at the Rol position. Energy weighted $\eta \times \phi$ position of the cluster is identified.
- Tracking algorithms are executed to identify associated tracks.
- Additional criteria on jet isolation, jet narrowness and track multiplicity are applied to distinguish taus from jet background.


Taus at Event Filter


- At Event Filter the selection follows the offline reconstruction procedure as closely as possible, using different selection for 1-prong and multi-prong decays.
- The calorimeter algorithm collects cells in a rectangular Rol of size 0.8×0.8 around the Lvl1 tau trigger candidate.
- Tracking is performed in an Rol of size 0.6×0.6 around the Lvl1 tau trigger candidate.

Tau Trigger Performance

Tau Trigger Menu

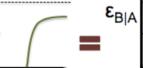
- The Trigger Menu is made up of a list of triggers (L1 Item \rightarrow L2 Chain \rightarrow EF Chain), including prescales at each level.
- Contains physics triggers of interest, triggers for calibrations and other physics studies (efficiencies, backgrounds, etc) and 'pass-through' triggers for performance studies.
- Various tau and tau-combined triggers are included in the physics menu.

	Туре	Motivation	Trigger
	Single Tau	Higgs→ττ	tau50_loose
An indicative menu for the tau trigger group. In reality the trigger menu contains many more triggers, especially for commissioning at initial data taking	Multi-Tau	Higgs → ττ	2tau29_loose
	Combined	top, Ζ→ττ	tau12_loose_e10_loose
		top	tau16_loose_3j40
		W→τν	tau12_loose_xe20
	Commissioning	Trigger Efficiency	tau12_loose_PT
	Calibration	Hadronic	trk9_loose
phase.		ID Alignment	trk6_IDCalib

Plans for Efficiency Measurements in Early Data

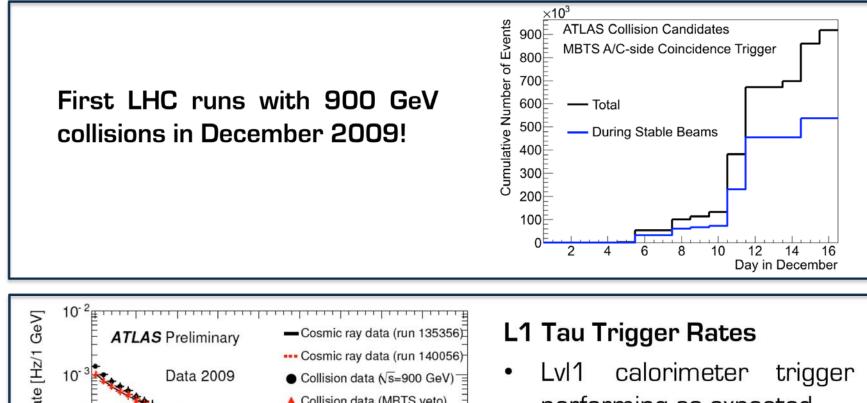
Tag and Probe

- Using a single-object inclusive trigger, select one object triggered online and study the trigger response of the second object, not used in the online selection.
 - e.g. Z→TT events


QCD Fake Taus

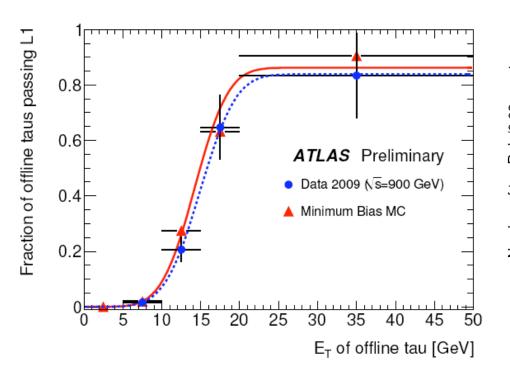
- Not enough W's and Z's in early data but plenty of QCD tau-like events.
- Can extract efficiency using the fake taus, provided the turn-on is the same (studied in MC) and the denominator well defined ('tightly' reconstructed tau).

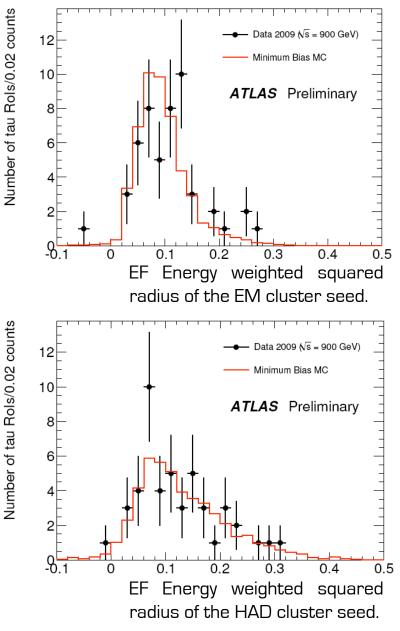
Bootstrap method


• The efficiency, $\epsilon_{\rm B}$, of a trigger chain B, with threshold higher than a chain A, can be determined in a sample triggered by A (provided that $\epsilon_{\rm A}$ is measurable): $\epsilon_{\rm B} = \epsilon_{\rm AB} \times \epsilon_{\rm A}$.

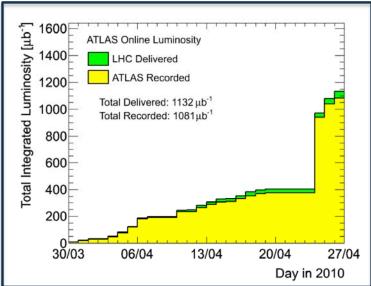
– e.g. B: tau50_loose & A: tau16_loose

Tau Trigger rate in 900 GeV p-p collisions




- Cumulative L1 tau rate [Hz/1 GeV] Collision data (MBTS veto) Collision data (MBTS req) 10 10^{-5} 10⁻⁶ 10 20 30 15 25 35 40 45 50 L1 tau E_T threshold [GeV]
- performing as expected.
- Good agreement between cosmic ray rate and collision rate without MBTS (Minimum Bias Trigger Scintillators) requirement.

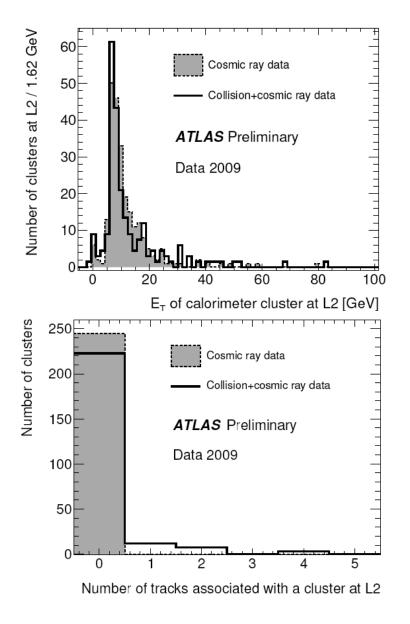
Performance in 900 GeV p-p collision data


- Events selected by MBTS, requiring Calorimeter and Inner Detector good runs.
- At least one offline reconstructed tau with at least one associated track.
- Variables used in the tau trigger selection in data and MC; reasonable agreement – verifying the good detector and tau trigger performance.

Towards 7 TeV Collisions

- The ATLAS tau trigger system has been developed using simulated events.
 - Evaluation of algorithm performance has started before collisions, using cosmic data.
- The first collision data at 900 GeV have provided a measure of good performance of the tau trigger.
- Together with the tau trigger, the calorimeters and tracking detectors, that contribute to the tau trigger reconstruction, are seen to perform well.
- The LHC has already delivered plenty of 7 TeV collisions:
 - New results on the tau trigger implementation and the detector performance is coming up.
 - Commissioning essential for the understanding of the early data!

Back-Up Slides


Online and Offline Data Quality

Online Data Quality

- Performed by the shifters at the ATLAS Control Room.
- A set of plots with calorimeter and tracking related variables used at the tau trigger selection is available for comparisons to reference plots from older good runs.

Offline Data Quality

- Prompt reconstruction of the raw data ('express stream') at TierO provides information for quick feedback on data quality.
- Monitoring setup contains trigger related variables, ensuring the expected performance of the detector and the trigger.
- Reference plots are based on older good runs and are periodically updated.

