

OPTIMIZATION OF CRYSTALS FOR APPLICATIONS IN DUAL-READOUT CALORIMETRY

Gabriella Gaudio INFN Pavia on behalf of the Dream Collaboration

Dual Readout Method

- ◆ Addresses the limiting factors of the resolution of hadron calorimetry with the aim of reaching the theoretical resolution limit (15%/√E) and in addition allows for
 - Calibration of an hadron calorimeter just with electrons
 - High resolution EM and HAD calorimetry
 - ILC/CLIC or Muon collider physics requirements
- The Dual-Readout technique is based on the simultaneous measurement of
 Čerenkov light (only produced by relativistic particles, dominated by electromagnetic hadron shower component)
 - ✦ Scintillation (a measure of dE/dx)

on an event-by-event basis

Measurement of the electromagnetic fraction (fem) of the hadron shower on event-by-event basis

Dual Readout Method

Quartz + scintillating fibers detector

- C and S separated by construction
- feasible technique for an hadronic calorimeter or an EM+HAD integrated calorimeter
- neutron fraction measurement capability (see J. Hauptman's talk)
- limited electromagnetic resolution due to sampling fraction

Crystal detector

- C and S separated with different techniques (see later)
- optimal electromagnetic resolution
- hybrid system operated with a dual-readout technique allows to overcome e/h difference between the two types of detector and therefore maintain a good hadronic resolution (see **D. Pinci's** talk)

Čerenkov vs Scintillation

Properties	Čerenkov	Scintillation		CALORIMETER
Angular distribution	Light emitted at a characteristic angle by the shower particles that generate it $\cos\theta = 1/(n\beta)$	Light emission is isotropic: excited molecules have no memory of the direction of the particle that excited them		
Time structure	Instantaneous, short signal duration (few ns)	Light emission is characterized by one or several time constants. Long tails are not unusual (slow component)	0 -20 (Am) a	eam 4DC2
Optical spectra	λ ⁻² spectrum	Strongly dependent on the crystal type, usually concentrated in a (narrow) wavelength range	-60 -80 -100 -120 -140	UV filter Yellow filter
Polarization	polarized	not polarized	-160 <u>-</u> 0	50 100 150 200 Time (ns)

Crystals: what do we need?

- Good Čerenkov vs Scintillation separation
- Response uniformity (no light attenuation)
- High light yield (to reduce contributions to the resolution due to p.e. statistics)

Test performed so far

- PbWO4 crystals (N. Akchurin et al., NIM. A582 (2007), N. Akchurin et al., NIM A584 (2008), N. Akchurin et al., NIM A593 (2008))
- BGO (N. Akchurin et al., NIM. A598 (2009), N. Akchurin et al., NIM A598 (2009), N. Akchurin et al., NIM A 610 (2009))
- Doped PbWO4 crystals [Praseodymium, Molybdenum] (N. Akchurin et al., NIM A604 (2009))

CRYSTALS TESTED

PbWO4 with 5 Mo dopant concentration

- * 0.1%, 0.2%, 0.3%
- * 1%, 5%
 - * produced for TB2008
 - * N. Akchurin et al, NIM A604 (2009)

Mo:PbW04 Crystals

FILTERS

6

- * Scintillation side: GG495 (yellow)
- * Čerenkov side:
 - * UG11 (cutoff 390 nm)
 - * U330 (cutoff 400 nm)
 - * UG5 (cutoff 420 nm)

Detection efficiency of light exiting the crystal including optical transmission of the filter and the cookies and QE of the photocathode (Hamamatsu R8900U-100 SBA (36% QE))

Signal time structure

- Mo 0.3% crystal oriented at 30°
- Signal in the UV region filtered by UG11 filter is really marginal: region close to the absorption edge extremely critical

Crystals: what do we need?

- Good Čerenkov vs Scintillation separation
- Response uniformity
- High light yield (to reduce contribution of p.e. fluctuation to the resolution)

Figures of merit

- C/S ratio (angular scan measurements)
- Light Attenuation (longitudinal scan measurements)
- Light yield measurements

 $\Pi = \frac{(C/S)|_{30^0}}{(C/S)|_{-30^0}}$

G. Gaudio - Calor2010 10-15.05.2010

concentration effect

the lower the Mo concentration, the shorter the wavelength at which the scintillation emission starts: more contamination \Rightarrow lower C/S ratio

U

filter cut-off effect

the lower the filter cut-off, the smaller the scintillation contamination, the larger the C/S ratio

 Light Attenuation

 CH1 Average
 av1

 Entries 1.488057e+

$$A = \frac{I(75) - I(65)}{I(75)}$$

- Shown results are for Čerenkov signal
- Scintillation attenuation negligible

Light attenuation: results

concentration effect

the smaller the Mo concentration, the lower the self-absorption edge, the smaller the effect on light attenuation

filter cut-off effect

the lower the filter cut-off, the smaller the Čerenkov signal integration window, the larger the light attenuation effect

Čerenkov light yield

In order to measure the light yield we need to determine the energy deposited in the crystal

- No ADC readout: event-by-event integration of the time structure of the signal generates an "ADC-equivalent." distribution
- The integrated scintillation signal provides a calibration for deposited energy
- From MC simulation the average deposited energy is 0.578 GeV

$$\frac{\sigma_c}{\mu_c} = p_0 + p_1 \frac{1}{\sqrt{S}} = \frac{1}{\sqrt{p.e.}}$$

$$p.e. = \frac{1}{0.578(\frac{\sigma_c}{\mu_c})^2}$$

Čerenkov light yield: results

filter cut-off effect

the lower the filter cut-off, the smaller the Čerenkov signal integration window, the smaller the light yield

concentration effect

the smaller the Mo concentration, the lower the self-absorption edge, the larger the Čerenkov signal integration window, the larger the light yield

	UG11	U330	UG5
0.1	5	62	
0.2		57	
0.3	6	55	65
1		58	
5		38	

Conclusions

		UG11	U330	UG5
7	0.1	5	62	
	0.2		57	
	0.3	6	55	65
	1		58	
	5		38	
		UG11	U330	UG5
t	0.1	0.55	0.13	0.12
	0.2		0.15	
	0.3	0.45	0.10	
	1		0.08	
	5		0.23	
		UG11	U330	UG5
S	0.1	4.7	2.3	2.1
	0.2		1.7	
	0.3	1.8	1.5	
	1		1.8	
	5		3.0	

- LY and attenuation performances tends to disfavor the UG11 filter which would be on the contrary the best choice for C/S
- U330 and UG5 filters give comparable results
- High Mo concentrations (5%) give the worst performances in almost any respect
- 0.1% 1% Mo concentrations seem to be adequate for dual-readout technique purposes
 - 0.3% seems to be optimal
 - a matrix made of 0.3%Mo:PbWO4 crystals will be tested next summer

Optimization of Crystals for Applications in Dual-Readout Calorimetry

Submitted to NIM A

N. Akchurin^a, F. Bedeschi^b, A. Cardini^c, R. Carosi^b, G. Ciapetti^d,
M. Fasoli^e, R. Ferrari^f, S. Franchino^g, M. Fraternali^g, G. Gaudio^f,
J. Hauptman^h, M. Incagli^b, F. Lacava^d, L. La Rotondaⁱ, S. Lee^h,
M. Livan^g, E. Meoni^{i,1}, M. Nikl^j, D. Pinci^d, A. Policicchio^{i,2}
S. Popescu^a, F. Scuri^b, A. Sill^a, G. Susinnoⁱ, W. Vandelli^k,
A. Vedda^e, T. Venturelliⁱ, C. Voena^d, I. Volobouev^a and R. Wigmans^{a, 3}

^b Dipartimento di Fisica, Università di Pisa and INFN Sezione di Pisa, Italy ^c INFN Sezione di Cagliari, Monserrato (CA), Italy

^d Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN Sezione di Roma, Italy

^e INFM and Department of Materials Science, Università di Milano-Bicocca, Italy ^f INFN Sezione di Pavia, Italy

^g INFN Sezione di Pavia and Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Italy
^h Iowa State University, Ames (IA), USA
ⁱ INFN Cosenza and Dipartimento di Fisica, Università della Calabria, Italy
^j Institute of Physics, Prague, Czech Republic

^k CERN, Genève, Switzerland

BACKUP SLIDES

Interference filters

Dichroic (interference) filters made by depositing on the glass a series of coatings
They use interference to select the desired wavelenghts and destroy or reflect the others
The filter can be customized and the transmission window can be finely tuned
But the transmission depends on the incidence angle

Interference filter by ODL (Italy)

Transmission curve for normal incidence

For angles larger than 15⁰ from the normal the transmission region shifts towards shorter w.l.

G. Gaudio - Calor2010 10-15.05.2010

19

UG5

the house a second to the

BSO (bismuth silicate, $Bi_4Si_3O_{12}$)

Same as BGO, with Si in place of Ge. Developed to increase rad hardness and decrease costs Ishii et al., Optical Materials 19, (2002) 2001-212 Harada et al., Jpn.J. Appl.Phys.Vol.40 (2001) 1360-1366 Kobayashi et al. Nim 205 (1983) 113-116

Property	BSO	BGO
Density (g/cm^3)	6.80	7.13
Peak emission (nm)	480	480
Relative LY	20	100
Refractive index	2.06	2.15
Decay constants (ns)	2.4 (6%), 26(12%), 99(82%)	5.2 (2%), 45(9%), 279(89%)
d(LY)/dT(%K)	-2	-1.5

Similar to BGO.

Main differences: smaller LY (20% of BGO), shorter decay time of scintillating light (dominating 100 ns), and slightly better tranparency to Cherenkov light (absorption cutoff below 300 nm) (doping to shorten the decay time would increase absorption)

C/S ratio: results (II)

integration window effect

the smaller the integration window, the smaller the scintillation contamination

an optimization of the separation power is possible

