Particle Flow Calorimetry: Experimental Status and Technical Developments

Felix Sefkow

What we learnt from CALICE:

- Introduction:
 - testing PFLOW calorimetry
- In real terms:
 - Validate simulation
 - test algorithms
 - test technologies and establish feasibility

Understand particle flow performance

%

- Particle flow is always better
 avon at high jot operation
 - even at high jet energies
- HCAL resolution does matter
 - also for confusion term
- Leakage plays a role, too

How to test it experimentally?

- "Jets" from thin targets?
 - Would require magnet spectroscopy and large acceptance ECAL + HCAL
 - Simulation study
 - Multi-million \$ experiment
 - and still inconclusive
 - need to control target losses and acceptance losses at 1-2% level
 - model dependence

20 GeV pion, 0.8 T

- Factorize the problem: check the ingredients
 - simulation
 - algorithms
 - technical performance

Critical questions

- Are the basic detector **performance** predictions confirmed?
- Are the **shower parameters** well enough simulated to predict PFLOW?
- Is the **substructure** actually there and well modeled
- Can one realize the potential of software compensation for gain and linearity?
- Can we verify the "double track resolution" of a tracking calorimeter?
- Are **detector effects** under control?
- Can we **calibrate** millions of cells and control stability?
- Can we build the detector without spoiling it by **dead** material everywhere?
- What are the relative merits of different technologies for PFLOW?

Technology tree

Overall status

- Major test beam campaigns at DESY, CERN and Fermilab
- 1st generation "physics" prototypes
- Mostly combined set-ups ECAL-HCAL
- Si W ECAL 2005-08
- Scint W ECAL 2007-09
- Scint Fe HCAL 2006-09
- RPC Fe HCAL to start end 2010

- 2nd generation "technical" prototypes: construction and commissioning ongoing, single or few layers
- Complete detectors to start with RPC-Fe HCAL 2011
- ECAL, Scint Fe HCAL later

Validation of the simulations detector performance shower models

Pions in the SiW ECAL

- test Geant 4 predictions with 1 cm² granularity
- sensitive to shower decomposition
- favor recent G4 physics lists
- certainly not perfect certainly not bad either!

Shower Components:

- electrons/positrons knock-on, ionisation, etc.
- protons
 - from nuclear fragmentation
- mesons
- others
- sum

Shower fine structure

rack Segments in Hadronid Shok Waisstrileungths: Angles & Multiplicities

Track length and slope well described by all models: • Could have the same global parameters with "clouds" or "trees" • Beam composition well modeled, satisfactory inclusion of detector noise • High energy cross sections well described • High energy cross sections well described

- - Surprisingly good agreement already

Particle Flow Calorimetry: Experimental

Felix Sefkow CALOR 2010, Beijing, May 10-14, 2010

12

Summary on validation:

- The particle flow detectors perform as expected
 support predictions for full-scale detector
- Geant 4 simulations not perfect, but also not as far off as feared a few years ago
 - fruitful close cooperation with model builders ongoing
- Predicted shower sub-structure is seen
 - detailed checks possible, benefits for all calorimeters

Test the algorithms with real data

- Soltware Compensation. Grouar retriod

- Electromagnetic energy deposits tend to be denser than hadronic ones
- Improvement studied on the cell (local) and an the cluster (global) the shower:
 Improvement studied on the cell (local) and an the cluster (global) the shower:

• Used as input for a neural net, training of the NN with simulations (quasi-

continuous energy)

Software Compensation: Linear
 No prior knowledge of the beam energy needed for application of method

- Poor man's dream
- Significantly improved resolution AND linearity
- High granularity many possibilities

Two-particle separation

- The "double-track resolution" of an imaging calorimeter
- Small occupancy: use of event mixing technique possible
- Important: agreement data simulation to be done with photons, too
 - sharing the same limitations

Leakage estimation

- Infer leakage from seen part of shower topology and energy
- multivariate techniqes; striking potential
- implications for detector optimization: implement in Pandora

Summary on algorithms

- Granularity is extremely powerful
- Energy resolution and imaging capabilities verified with data at sub-structure level
 - the main drivers of PFLOW performance
- Leakage estimation and software compensation not yet implemented in present Pandora

Test the technologies and establish feasibility

Calibration

- Study triggered by review of LC detector LOI
- Can you calibrate millions of channels and maintain stability?
 - not really a worry for Si, but could be an issue for scintillator
- 1. Simulate impact of statistic (uncorrelated) and systematic (correlated) calibration errors, find ∫L for in-situ calibration
 - PFLOW performance VERY robust w.r.t. channel-to-channel variations; coherent effects easy to control
- 2. Exercise in-situ methods (SiPM auto-calib, track segments) with test beam data from CERN and FNAL
 - transport calibration across the ocean and restore performance

Integration

- Sensor technology, precision mechanics
- Next: system engineering
- Industrialized ASIC development using common building blocks
- New operational challenges
 - power pulsing
 - on-detector zero suppression
 - real-time threshold monitoring
 - time measurement

spin-off Si ECAL

Pushing the Limits of Granularity: A Digital ECAL Digital calorimetry Extreme resolution needed to resolve every single particle within an

- Readout gra Digital HCAL Physics Prototype
- MAPS DECHe concept: Active I
 - 1st semath I cm² pads, one bit readout per channel showepsoof of principle measurement at Fermilab
- Digital and hadron card
 - even h
 - suppre
 - reduce
 - limited
- Small RP
- Full-size I prototype
- Promising MicroMEGAS based readout modules

Friday, May 14, 2010

Particle Flow Calorimetry: Experimental

Felix Sefkow CALOR 2010, Beijing, May 10-14, 2010

22

High energy

 10^{-2}

 10^{-3}

Felix Sefkow

50

- Particle flow also a promising option for CLIC energies
- Leakage expected to limit PFLOW performance
 - need 1 λ ECAL + 7 λ HCAL
- Tungsten absorber costcompetitive with larger coil - and less risky
- Test beam validation with scintillator and gas detetctors
- More neutrons:
 - different model systematics
 - timing measurements

100

CALOR 2010, Beijing, May 10-14, 2010

23

200

t [ns]

W noAir

150

Summary on technologies

- a leap in several orders of magnitude in channel count
- new sensor technologies, new integration concepts
 - the latter is part of the feasibility demonstration
- progress towards realism:
 - realistic designs
 - realistic simulations
 - realistic cost
 - realistic proposal
 - Digital calorimetry ready for exploration

Particle Flow Calorimetry: Experimental

24

Conclusion

- Particle flow calorimetry does not solve the lacksquareinherent problems of hadron calorimeters
- But it holds the promise of providing a highly • performant work-around

$$\frac{\sigma_E}{E} = \frac{21}{\sqrt{E}} \oplus 0.7 \oplus 0.004E \oplus 2.1 \left(\frac{E}{100}\right)^{+0.3} \%$$

- Substantiated by test beam data
- Can be built

