Calibration of the relative response of the ALICE electromagnetic calorimeter EMCAL

• Physics motivations :

- \rightarrow Quark-Gluon Plasma study
- The experiment :
 - \rightarrow The ALICE experiment and its calorimeters
 - \rightarrow EMCAL characteristics
- Calibration with cosmic muons :
 - \rightarrow Experimental setup
 - \rightarrow Analysis procedure
 - \rightarrow Results
 - \rightarrow Tracking time variations

Outline

Julien FAIVRE for the ALICE collaboration

The Quark-Gluon Plasma (QGP) :

Why/how study the QGP :

- Phase transition predicted by Quantum Chromodynamics calculations (QCD = theory of the strong interaction)
- Large color charge density ?
 Ultra-relativistic heavy ion (e.g. Pb) collisions Reference experiments : p-p, p-A
- Study :
 - \rightarrow Phase diagram of nuclear matter
 - $\rightarrow \begin{array}{c} \text{Behavior of the} \\ \text{hot and dense matter} \end{array}$
 - \rightarrow Test QCD calculations
 - → Probe partonic composition of proton and nuclei

• ALICE : large experiment dedicated to the heavy ion collisions at LHC@CERN

Some probes which involve calorimetry :

- Photons :
 - \rightarrow Reference (unaffected by strong interaction)
- Thermal photons :
 - \rightarrow Get QGP temperature
- Jets, azimuthal correlations between jets and hadrons or γ :
 - \rightarrow Get QGP density
 - \rightarrow Learn how partons interact in QGP
 - \rightarrow Investigate QGP equation of state
 - \rightarrow Measure the in-medium modification of the parton fragmentation function
- Heavy flavor (c and b quarks) :
 - \rightarrow Test QCD predictions of smaller in-medium energy loss
- All probes
 - \rightarrow involve a test of QCD calculations
 - \rightarrow provide data to constrain nucleon and nuclei parton content

北京 中国 May 13th 2010

Julien Faivre

Cf. talk Alessandra Fantoni

The calorimeter EMCAL :

VO

HMPID

Total : 10×1152 channels

- 10 supermodules
- 1 supermodule = 3×8 strips
- 1 strip = 12 modules of 2×2 towers
- Segmentation : $6 \times 6 \ cm \ (4.5 \ m \ from \ IP)$
- Acceptance : $-0.7 < \eta < 0.7, 100^{\circ}$ in φ
- Located in front of PHOS
- Shashlik : Pb/scintillator stack with wavelength shifting optical fibers in
- Light collect. : avalanche photodiod (APD)
- LED gain monitoring system
- 8 temperature sensors per SM
- Provides a trigger for Physics

Currently : 4 supermodules installed

- Requirements : $\sigma_E/E < 2 \oplus 15/\sqrt{E}$
- Beam test : $\sigma_E/E = 1.7 \oplus 11.1/\sqrt{E} \oplus 5.1/E$
- Contribution miscalibration : adds in the constant term

6/13 <u>北京 中国 May 13th 2010</u>

Relative calibration with cosmic muons :

Pre-calibrate tower gains before inserting in ALICE Requirements : dispersion < 10 %

- APD gain = function of high voltage (measured)
- Towers have varying efficiencies (e.g. light collection)
- Aim : tune APD gains so they compensate for the varying efficiencies
 ⇒ Each tower gives identical response to identical E deposit
- How : cosmic muons (permanent and free MIPs)

Take data \longrightarrow Calculate new HV New HV = f(prev HV; measured vs desired signal amplitude)

北京 中国 <u>May 13th</u> **Relative calibration with cosmic muons :**

Pre-calibrate tower gains before inserting in ALICE Requirements : dispersion < 10 %

Mean deposited energy : $\simeq 28 \ MeV$ (equivalent of 300 MeV electrons)

Experimental bench (side view) :

6/13

Isolation cut :

• Want narrow energy distribution \Rightarrow discard cosmics which hit more than 1 tower \Rightarrow discard event when a neighbor tower has some signal Isolation cut level limited by noise : 3 ADC

• "Map" of energy deposited by a muon

8/13 北京 中国 May 13th 2010

"Time of flight" (ToF) cut :

• Experimental bench (front view) :

• Time difference between both photomultipliers :

北京 中国 May 13th 2010

Average signal amplitude :

Oblique muons are cut
 ⇒ muons deposit energy in ≃ a single tower
 ⇒ narrow deposited energy distribution

<u>北京 中国 May 13th 2010</u>

Average signal amplitude :

- Measure average signal amplitude for all towers
- Then iteratively tune high voltages to move all average signal amplitudes to e.g. 16 ADC

Julien Faivre

Contributions to the width :

- $\sigma_{\text{tot}} = \sigma_{\text{deposited E}} \oplus \sigma_{\text{EMCAL resol}} \oplus \sigma_{\text{digit}} \oplus \sigma_{\text{temperature}}$ $\rightarrow \sigma_{\text{tot}} \simeq 14 - 17\% \qquad \oplus \sigma_{\text{other}}$ $\rightarrow \sigma_{\text{deposited E}} \simeq 12 - 16\%$ $\rightarrow \sigma_{\text{EMCAL resol}} \simeq 3.8 - 4.1\%$ $\rightarrow \sigma_{\text{digitization}} \simeq 1.8\%$
 - $\rightarrow \sigma_{\text{temperature}} \simeq 1.5 3.0\%$
 - $\rightarrow \sigma_{\text{other}} = \text{electronic noise, signal fit, pedestal subtraction, residual oblique muons, ...}$

Uncertainty on the measured average signal amplitude :

- $\sigma_{\mu} = \frac{\sigma_{\text{tot}}}{\sqrt{N}}$
- Typical statistical relative uncertainty on the average signal amplitude for a 23-hour run (in %)
 → Below the 1 % level

北京 中国 May 13th 2010

Relative calibration results :

- 5 iterations : spread keeps going down !
 ⇒ dominated only by statistics collected and number of iterations
- ⇒ relative calibration provided after
 3 iterations is reliable
 - \rightarrow can reach the 1 % level

- Dispersion (width ÷ mean) of average signal amplitudes from all towers :
 - \rightarrow Start with worse than 10 %
 - \rightarrow Reach < 2 % in 2-3 iterations

北京 中国 May 13th 2010

Tracking the tower gain changes :

- Temperature sensors : correlation between 2 sensors gives uncertainty $\simeq 0.2^{\circ}$
- Temperature dependance of APD gain G: $\frac{1}{G} \frac{dG}{dT} \simeq -1.5 \rightarrow -4\%/K$
 - \Rightarrow control of the

relative calibration at the < 0.5 % level

 LED monitoring : currenly under study LED pulse illuminates tower *and* goes to reference APD ⇒ real-time monitoring of tower gain changes

Conclusion :

	How	Requirem.	Status	Limits
Pre-calibration	Cosmics	<10%	$\simeq 2$ %	Time
Online monitoring	LED	< 5 %	OK	LED statistics
Offline monitoring Offline calibration	Temperature Particles	$\simeq 1$ %	OK Simu OK	Sensors accuracy Stat, HV digitiz.

- Relative calibration : Three 1-night data-taking enough to calibrate 1/3 supermodule to < 2 %
- π^0 peak in Alice with real data (no further relative calibration)

To be done next :

- Relative & absolute calib. with real data (MIPs, electrons matched with TPC tracks, π^0)
- Check how well LED and temperature monitoring perform in real situation
- DCAL extension (\simeq doubles EMCAL acceptance) : same procedure

BACKUP's

Backup, 15 北京 中国 May 13th 2010

Convergence of the APD high voltages :

- High voltage digitization : 0.2 V/bit
- Limit on gain calibration : $\simeq 0.5$ %

Backup, 16 北京 中国 May 13th 2010

APD gain as a function of high voltage :

• $G(V) = A + Be^{kV}$

EMCAL data :

- Tower size (active volume) : $\simeq 6.0 \times \simeq 6.0 \times 24.6 \ cm^3$
- Tower size : $\Delta \varphi \times \Delta \eta = 0.0143 \times 0.0143$
- Layers : $76 \times 1.44 \ mm$ Pb

 $77 \times 1.76 \; mm$ scintillator

• Number of radiation lengths : $20.1 X_0$

Backup, 18 北京 中国 May 13th 2010

Expected Physics performance with EMCAL :

