

Calor2010 XIV International Conference on Calorimetry in High Energy Physics

Measurement of the Muon Stopping Power in Lead Tungstate with the Electromagnetic Calorimeter in CMS

Andrea Benaglia Università degli Studi di Milano - Bicocca INFN - Sez. Milano - Bicocca

on behalf of the CMS collaboration

- Measurement setup
- Instrumental and containment effects
- Result of the measurement
- Summary

Introduction

- In Fall 2008, the CMS collaboration conducted a month-long data-taking exercise:
 - <u>commission</u> the experiment for extended operation
 - test the solenoid at 3.8 T
 - collect <u>~300 M cosmic triggers</u> for sub-detector performance studies

- With the data collected, we measured the specific energy loss (dE/dx) of muons in PbWO₄ (e.m. calorimeter) versus muon momentum and extracted:
 - a test of the <u>energy scale</u> of the calorimeter
 - a measurement of the muon <u>critical energy</u> in lead tungstate

The cosmic setup

Nearly all sub-detectors involved in the measurement of dE/dx vs p_{μ} in PbWO₄:

- cosmic/muon muon chambers HCAL ECAL tracker solenoid
- Trigger: track segments from any <u>muon</u> <u>chamber</u> with any p_T
- **dE**: energy cluster in <u>ECAL</u> + corrections
- dx: track extrapolation from outermost <u>tracker</u> hit through <u>ECAL</u>
- p_µ: fit of <u>tracker</u> hits + <u>B field</u>
 - $\sigma_p/p \sim 10\%$ for 1 TeV/c momentum muons
- Only muon deposits in lower ECAL half-barrel used to measure <dE/dx>
 - muon momentum measured in the tracker <u>upstream</u> energy loss

Andrea Benaglia - Calor2010 - Beijing, 10-14 May 2010

The electromagnetic calorimeter UNFN

- ECAL: scintillating calorimeter made of lead tungstate crystals (PbWO₄)
- Scintillating light detected by 2 APD on the rear face of each crystal (barrel)
 - APD <u>gain set to 200</u> for runs of interest for this analysis (4x w.r.t. operation condition @ LHC)

- ECAL global energy scale fixed with a 120 GeV electron beam (TB 2006)
- This analysis probes energy ranges down to 300 MeV, <u>far less than what ECAL is</u> <u>designed for</u>!
 - for a m.i.p. muon, dE in ECAL is approximatively
 1.5 MeV cm² g⁻¹ x 23 cm x 8.9 g cm⁻³ ~300 MeV

DEGLI STUDI

Instrumental effects

- Energy released by muons in ECAL is reconstructed via a <u>clustering algorithm</u>
 - collects deposits in a 5x5 matrix above threshold
- Raw dE/dx is affected by instrumental biases:
 - single channel noise fluctuations
 - thresholds in readout/clustering processes

- Biases in energy reconstruction depend on the angle muon-crystal:
 - smaller deposit from skewed muons → threshold effect

Corrections to raw energy depositions have been extracted from data

13/05/2010

Andrea Benaglia - Calor2010 - Beijing, 10-14 May 2010

Energy containment effects

- Muons in ECAL \neq electrons in ECAL
- rear leakage of energy due to secondaries produced all along the muon path
- rear leakage is (partly) compensated by showers initiated in the material upstream the crystals
- two different regimes depending on the muon energy:
- <u>ow energy collisional processes dominating:</u>
- no differences found (within 1%) in <dE/dx> in upper and lower ECAL hemisphere, although different upstream material budget (HCAL / tracker)
 - → tracker material is thick enough to compensate rear losses
- assume no net correction for collisional processes and 1% as systematic uncertainty on correction

•	<u>High energy - radiative processes dominating:</u>		
•	leakage corrections from a <u>dedicated</u>	no upstream material budget	Leakage correction factors:
	<u>Geant4</u> simulation, in <u>two limit configurations</u> :	all tracker mat.	(14.5±2.5)% @ 170 GeV/c
•	correction applied is the average of the two cases, systematic uncertainty is half the difference	budget in front of ECAL	(28±5)% @ I TeV/c

Andrea Benaglia - Calor2010 - Beijing, 10-14 May 2010

🕻 DEGLI STUDI

13/05/2010

The dE/dx measurement

Result of the analysis

 8.8 x 10⁷ initial triggers reduced to a final statistics of 2.5 x 10⁵ events, divided into 20 logarithmic bins

- 5 GeV/c < p_µ < 1 TeV/c
- angle(µ-crystal axis) < 0.5
- ∆ E/pµ < 1
- no deposits in upper ECAL hemisphere bigger than 500 MeV

Binned maximum likelihood fit of experimental points with

 $(dE/dx)_{meas} = \alpha \cdot [(dE/dx)_{coll} + \beta \cdot (dE/dx)_{rad}]$

 $\alpha = 1.004^{+0.002}_{-0.003}(\text{stat.}) \pm 0.019(\text{syst.})$ $\beta = 1.07^{+0.05}_{-0.04}(\text{stat.}) \pm 0.06(\text{syst.})$

- Agreement between data and theory at <u>low energy</u> at 2.0%^{stat.+syst.} level
 - 1.9% systematic uncertainty:
 - 1.2% from uncertainty on energy scale dependence on angle and clustering
 - 1.0% from uncertainty in **containment corrections** for collisional processes
- Extract <u>critical energy</u> value from $\beta \rightarrow E_C = 160^{+5} 6(stat.) \pm 8(syst.) GeV$
 - 8 GeV systematic uncertainty:
 - 4.5 GeV from uncertainty in containment corrections for radiative processes
 - 6 GeV from stability of fit from bias correction and variation of analysis cuts (mainly angle mucrystal)

t DEGLI STUDI

- Measurement of muon stopping power in PbWO₄ performed over a wide muon momentum range - 5 GeV/c → 1 TeV/c
- In the region $p_{\mu} < 20 \text{ GeV/c}$:
 - → average energy deposits ~300 MeV (collisional processes)
 - → agreement at 2% level between the measured stopping power and the calculated values

→ the <u>energy scale of the detector</u>, previously determined with 120 GeV/c electrons, is <u>confirmed down to the sub-GeV scale</u>

- From a fit of the experimental points up to $p_{\mu} = 1 \text{ TeV/c}$:
 - → first measurement of the muon critical energy

→ $E_C = 160^{+5}-6(stat.)\pm8(syst.)$ GeV, in agreement with expectation from theory (169.5 GeV)

Backup slides

Readout and energy reconstruction

IStituto Nazionale di Fisica Nucleare

- On-line data reduction is based on
 - Zero Suppression (ZS): only <u>channels above the ZS threshold</u> (~20 MeV) are read out
 - Selective Readout (SR): <u>full readout of high-interest regions</u> a matrix of 3x3 trigger towers is read out (5x5 crystals each), centered on a trigger tower with at least 170 MeV

Instrumental effects

Aligned muons (α < 0.1):

- <u>SR is dominant over ZS</u> (in ~90% of cases muons deposit > 170 MeV) → all channels are read out
- <u>positive bias</u> in ∆ E measurement from upper <u>noise</u> <u>fluctuations</u> clustered together with signal
- Average noise per channel during cosmic runs measured to be ~1 ADC = 9.3 MeV
 - this reflects into a cluster energy bias of ~14.7 MeV

Skewed muons ($\alpha > 0.1$)

- ZS more frequent: higher threshold → smaller positive bias
- Shorter track segments in single crystals → negative bias from deposits under threshold
- Correct data for these effects:
 - normalize raw (dE/dx)_{coll} vs. angle to small-angle value through a fit of observed trend
 - subtract estimated noise bias of 14.7 MeV

Central fit: plateau up to 0.1 rad + linear fit
Systematics: estimated from the two limit cases no plateau / plateau up to 0.2