

Drift Time measurement in the ATLAS Liquid Argon electromagnetic calorimeter using cosmic muons

Carolina Gabaldon (CERN)

(on behalf of the ATLAS Liquid Argon Calorimeter Group)

Operating Calorimeters and Calibration Session CALOR 2010, May 13th, 2010

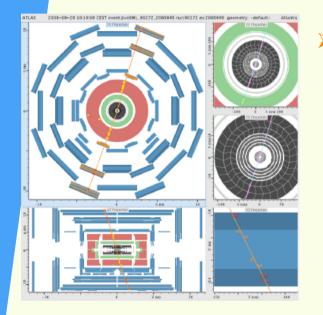
Carolina GABALDON

May 13th, 2010

Motivation

The calorimeter response needs to be known with a precision better than 1 %.

✓ To reach this value a good uniformity is needed



The intrinsic non-uniformity -> constant term

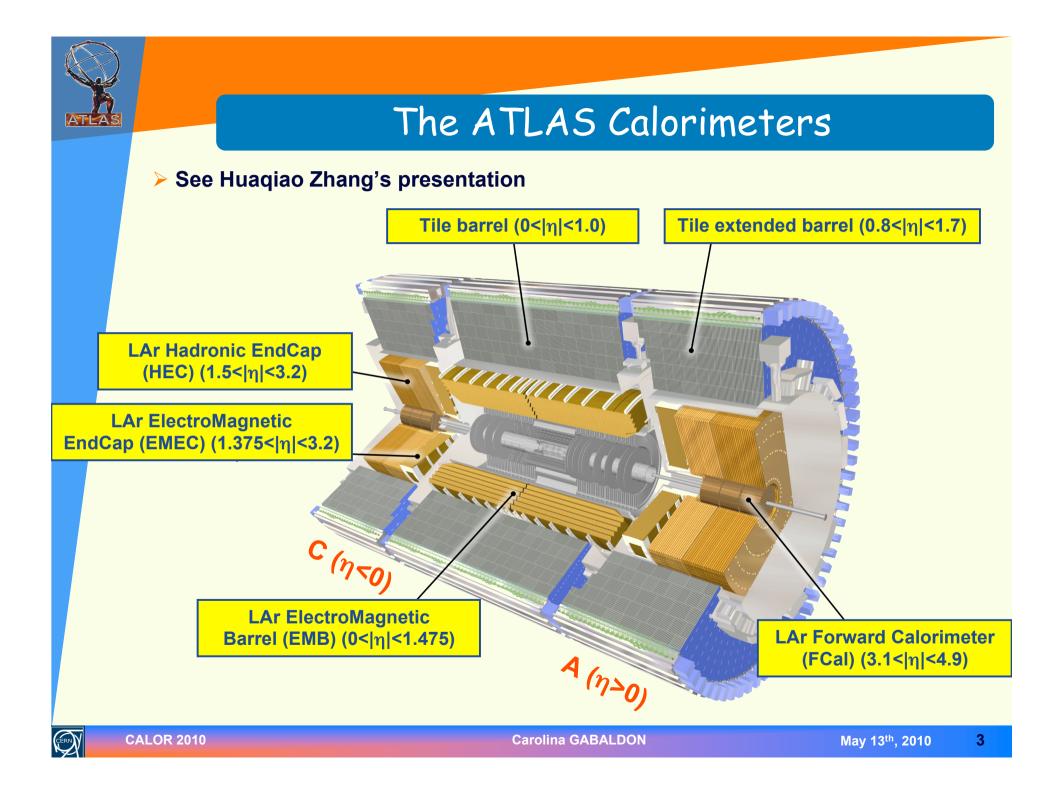
✓ from the lead thickness dispersion: measured during construction \rightarrow c ~ 0.18 %.

✓ from the LAr gap size variations: obtained from drift time (T_{drift}) measurements.

> T_{drift} measured from the signal shape of any ionizing particle but requires to record the whole pulse shape (\geq 32 samples).

After September 2008 LHC start-up 32 samples cosmic runs have been taken

✓ Precise studies can be performed →Drift time measurements



ATLAS

ATLAS Electromagnetic Calorimeter

A lead - liquid argon sampling calorimeter:

Good pseudorapidity coverage (|η|<3.2)

Full azimuthal coverage due to accordion geometry

High granularity: 173,312 cells

✓ Longitudinal and transversal segmentation:

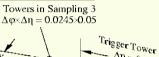
Layer 1 (FRONT) (Δη,Δφ) = (0.003, 0.025):

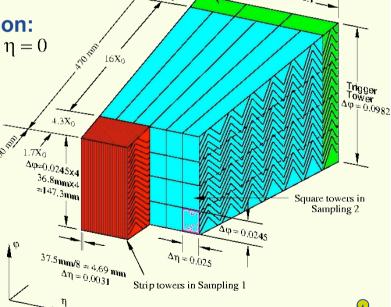
Position measurement, γ/π^0 separation

- Layer 2 (MIDDLE) (Δη,Δφ) = (0.025, 0.025): Main energy deposit
- Layer 3 (BACK) (Δη,Δφ) = (0.05, 0.025):

High energy showers, had./em separation

For |η|<1.8 a presampler





Calorimeter with a very high granularity and uniformity

Signal formation in LAr

HV[kV]

> The signal current in a LAr cell is given by:

$$I(t; I_0, T_{drift}) = I_0 \left(1 - \frac{t}{T_{drift}} \right) \text{ for } 0 < t < T_{drift}$$

with $I_0 = \rho \cdot V_{drift}$ the current at t=0.

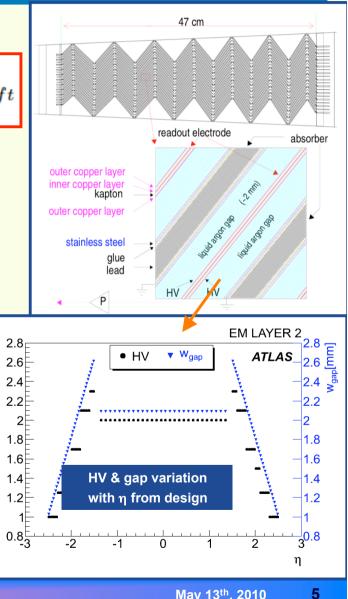
The signal height is proportional to the drift velocity (V_{driff}), hence to the inverse of the drift time:

$$T_{drift} = \frac{w_{gap}}{V_{drift}}$$

> The drift time (T_{drift}) is 4 times more sensitive to gap (w_{qap}) variations than E (the energy response):

$$V_{drift} = V_{ref} \cdot \left[\frac{HV}{HV_0} \cdot \frac{w_{gap0}}{w_{gap}}\right]^{\alpha} \frac{\alpha = 0.3}{T_{drift} \sim w_{gap}^{1+\alpha} \simeq w_{gap}^{1.3}}$$

The drift time is sensitive to sources of non-uniformities inside the detector (gap variation, temperature, HV...)



Ionization pulse shapes in the EM

2008 COSMIC MUONS

1200 1200 1000

800

600

400

200

-200

0

0

ADC

EM ENDCAP LAYER 2

HV=1.7 kV

(Data-Prediction)/Max(Data)

···· Prediction

100 200 300 400 500 600

Data

ATLAS

0.04

0.00

-0.02

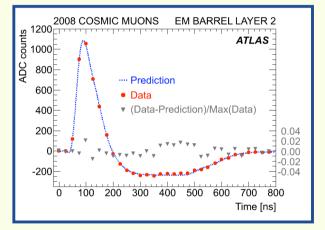
-0.04

700 800

Time [ns]

Cosmic muon pulses with 32 samples are analyzed:

Period: September-November 2008



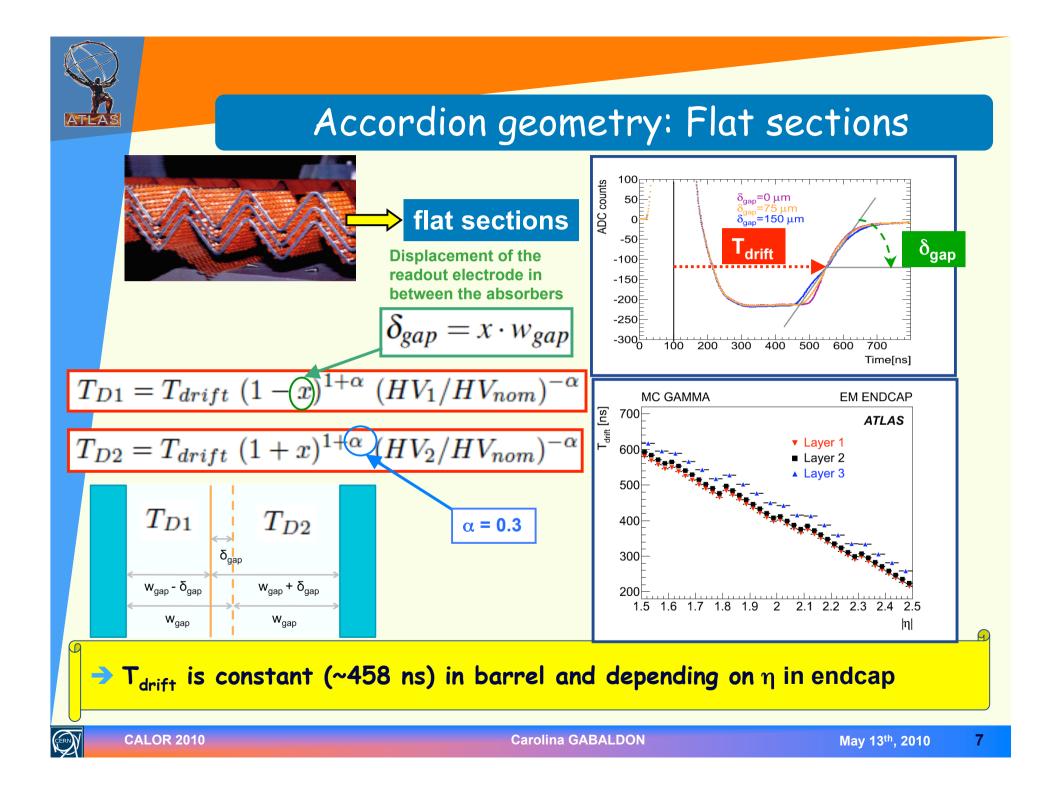
After selection cuts (~1-2 GeV):

Layer	# pulses barrel	# pulses endcap
Presampler	20 K	
Layer 1	43k	13 k
Layer 2	331 k	45 k
Layer 3	79 k	18 k

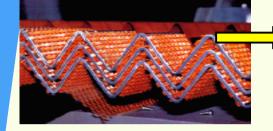
The length of the undershoot being equal to the drift time.

Carolina GABALDON

6



Accordion geometry: Bent sections



bent sections

In the bends of the accordion the drift time is bigger:

 $T_{bend} > T_{drift}$

 $I_0 = I_{nom} + I_{bend}$

$$T_{D3} = T_{bend} \ (HV_1/HV_{nom})^{-\alpha}$$
$$T_{D4} = T_{bend} \ (HV_2/HV_{nom})^{-\alpha}$$

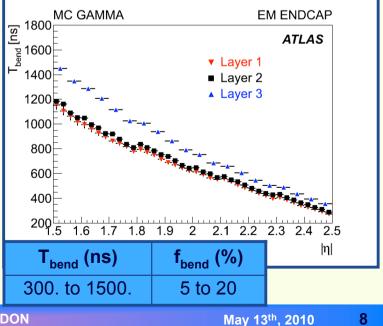
$$f_{nom} + f_{bend} = 1$$

"nom" represents the flat section

Barrel: Fixed value extracted from **GEANT 4** simulation:

Layer	T _{bend} (ns)	f _{bend} (%)
Layer 1	820.	4.9
Layer 2	898.	7.1
Layer 3	941.	8.5

Endcap: η-dependent value extracted from MC EM shower:



How do we measure the drift time?

The ionization pulse at the end of the readout chain:

 $g_{fit}(t; A_{max}, t_0, T_{drift}, x) = A_{max} \cdot g_{phys}(t; f_{nom}, T_{drift}, x, f_{bend}, T_{bend}) \quad \text{for} \ t > t_0$

Least squares method, minimization of:

$$Q_0^2 = \frac{1}{n - N_p} \sum_{i=1}^n \frac{\left(S_i - g_{fit}(t_i; A_{max}, t_0, T_{drift}, x)\right)^2}{\sigma_{noise}^2} \checkmark \text{ with 4 free parameters:} \\ \mathbf{T}_{drift}, \mathbf{x}, \mathbf{A}_{max} \text{ and } \mathbf{t}_0 \in \mathbb{C}$$

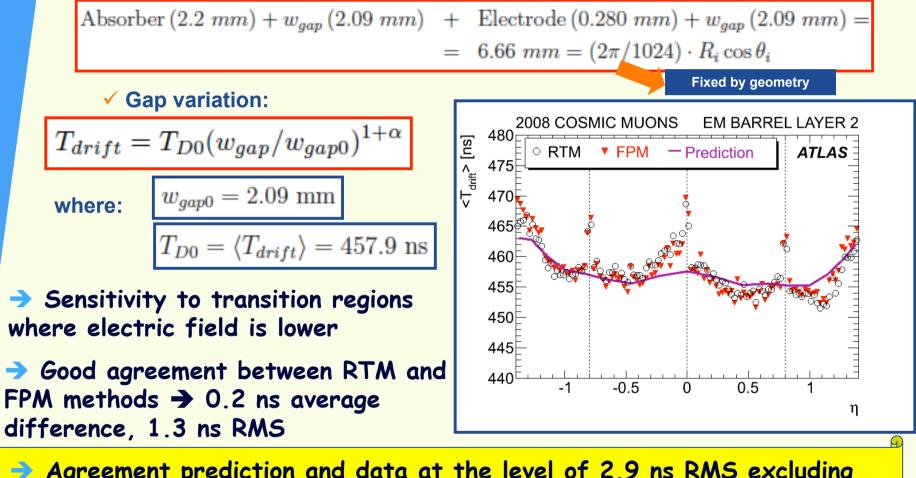
Two methods to predict the pulse shape g_{phys}: (see spares)

✓ RTM: standard ATLAS method, extracted from calibration signals.

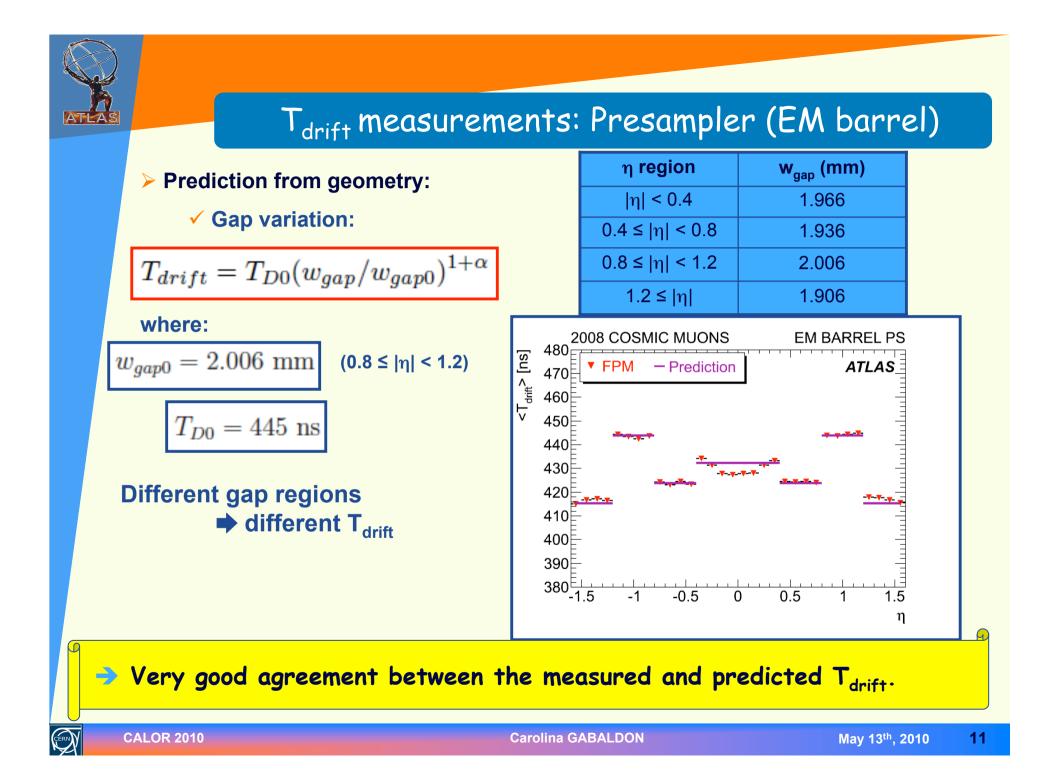
✓ FPM: analytical description of signal propagation through the electronic chain (only barrel).

T_{drift} measurements: Layer 2 (EM barrel)

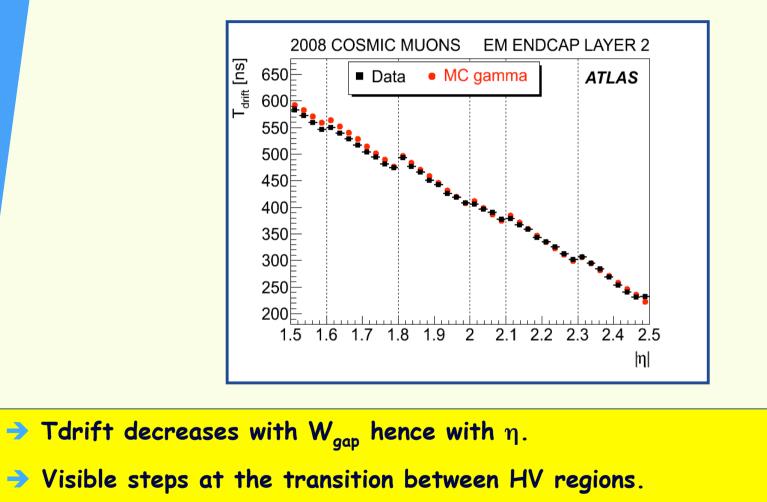
Prediction from absorber thickness measurement:



Agreement prediction and data at the level of 2.9 ns RMS excluding transition regions.



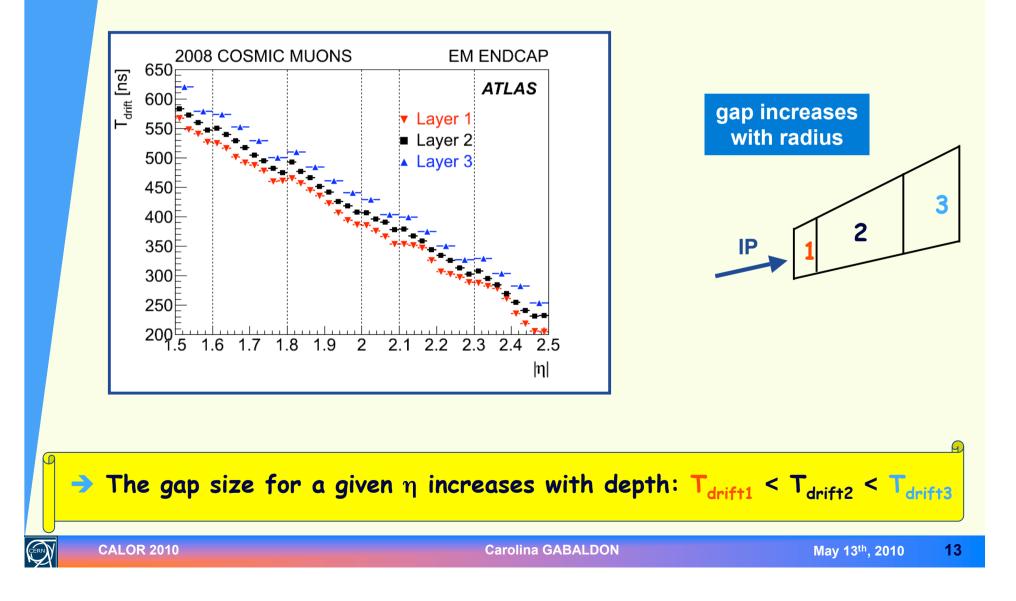
T_{drift} measurements along η (2)



Reasonable agreement with MC (at the level of 1% in layer 2)

CALOR 2010

T_{drift} measurements: Sensitivity to gap variation along depth (EM endcap)

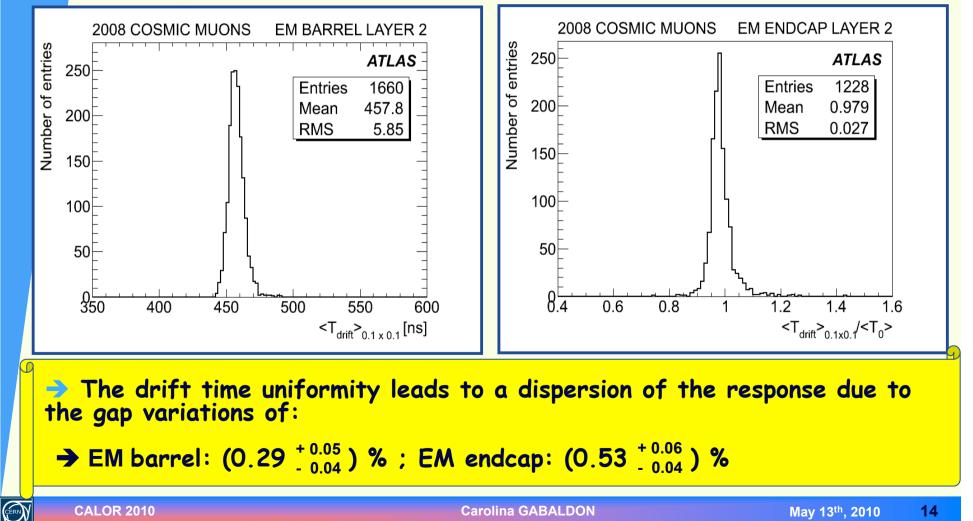


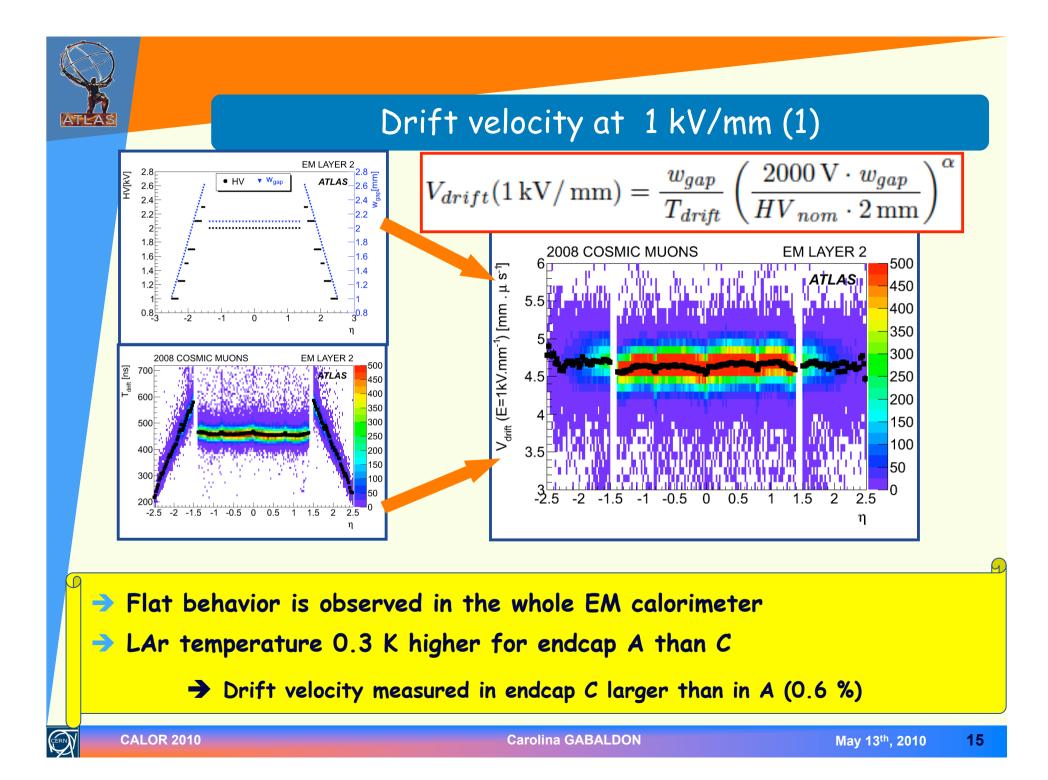
Response uniformity from T_{drift} measurements

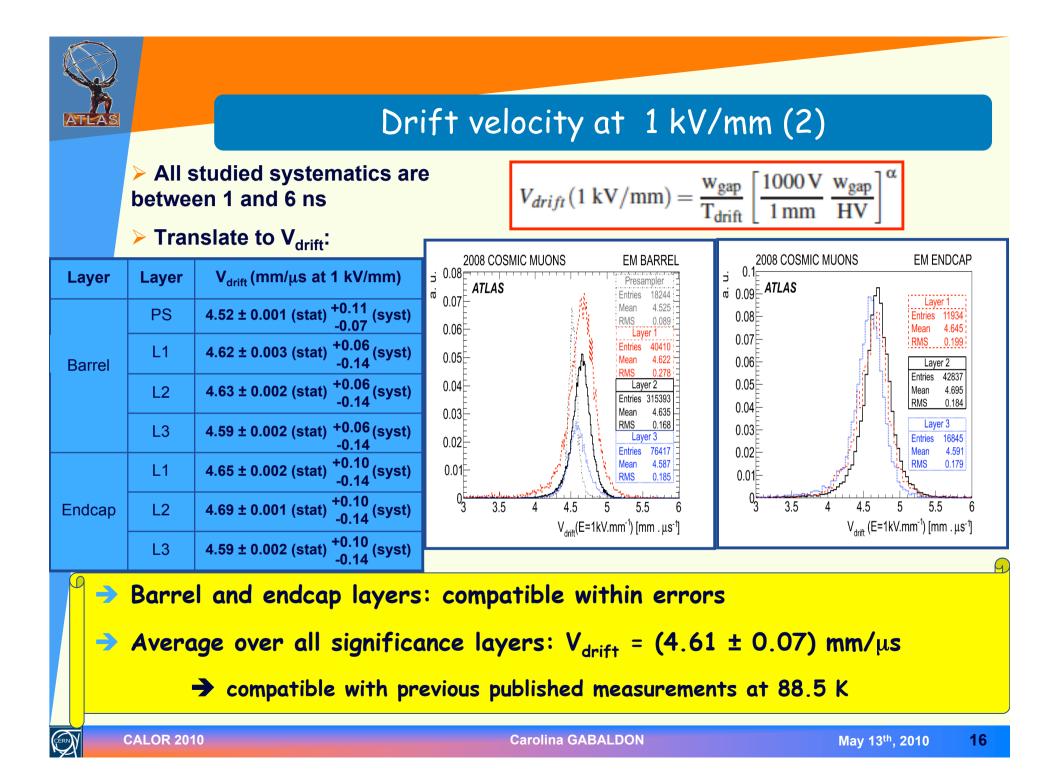
> Drift time uniformity within groups of 4 x 4 cells ($\Delta \eta \times \Delta \phi$ = 0.1 x 0.1):

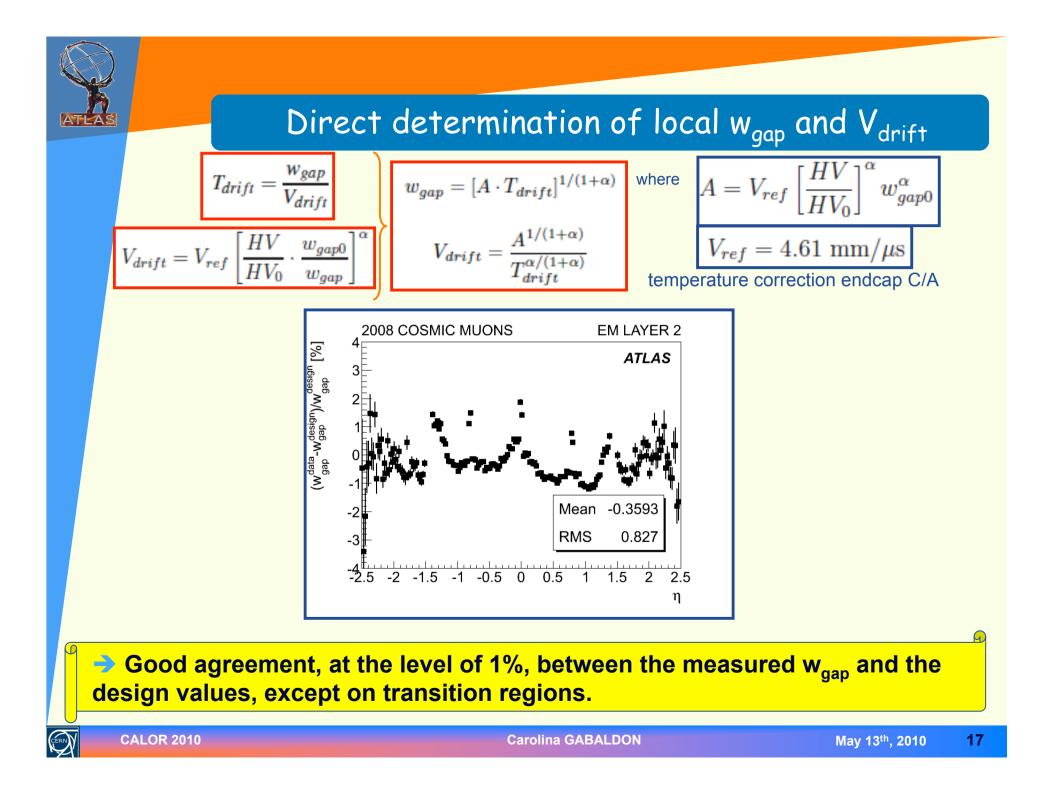
ATLAS

 \checkmark <T₀> is the normalization to cancel the variation with η due to the gap size variation









Conclusions

Sufficient amount of ionization data pulses of E>1 GeV can be used for precision measurement of average drift time in each cell.

➤ Measured T_{drift} → estimate of calorimeter non-uniformity of response due to gap variations:

 $\checkmark c_{gap} = 0.29$ % (barrel), $c_{gap} = 0.53$ % (endcap)

> Average drift velocity measurement: $V_{drift} = (4.61 \pm 0.07) \text{ mm/}\mu s$

✓ compatible with previous measurements at 88.5 K.

Gap thickness direct from T_{drift} measurement:

 \checkmark Ratio (measured/design) uniform to better than 1 % over the full η range.

Presented results are published in ATLAS-LARG-2009-02-004 and submitted to EPJ.



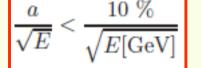
ATLAS Electromagnetic Calorimeter

EMC performance requirements to reach discovery potential (Higgs, W', Z'...):

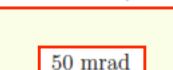
Energy resolution:

$$\frac{\mathbf{\sigma}_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

Sampling term



✓ Angular resolution:



E[GeV]

b < 50 MeV/cell

Noise term

constant term

 $c < 0.7 \ \%$

(γγ invariant mass reconstruction)

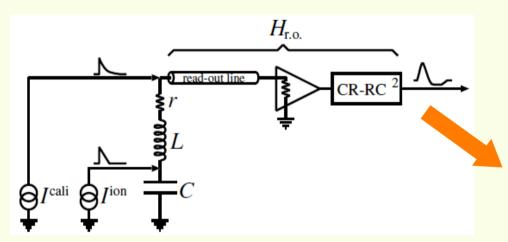
✓ Time resolution: 0.1 ns (background rejection)

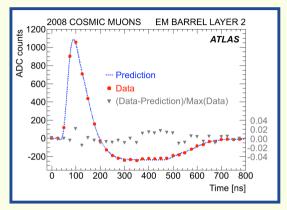
✓ Particle identification/rejection (e.g. γ/π^0 , e, ...)

The physics imposes a challenge in the construction and calibration of the calorimeter

Physics signal for the EM Calorimeter

In every EMC cell, the signal is generated by the drift of the ionization electrons inside the LAr gap:





Triangular signal is amplified and shaped by bipolar filter CR-RC (shaper) and then sampled every 25 ns (S_i) by SCA

> The Optimal Filtering (OF): signal maximum amplitude (A_{max}), temporal position (Δt)

$$A_{max} = \sum_{i=1}^{n} a_i S_i \qquad \Delta t = \frac{\sum_{i=1}^{n} b_i S_i}{A_{max}}$$

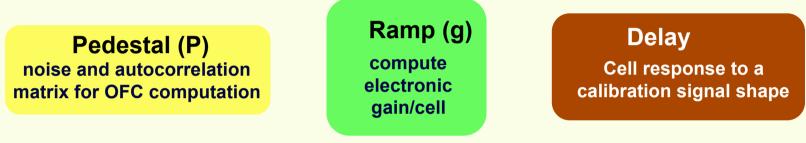
OF coefficients (OFC), a_i and b_i , are calculated from the signal shape with the condition to minimize the noise (including pile-up)

Default value for **n** in physics mode is 5 samples

OF requires the knowledge of signal shape (g^{phys}) and autocorrelation matrix between samples for every cell

LAr electronics calibration

During normal LHC operation a calibration system is used to monitor the ~173k cells regularly:



Energy per cell is calculated as:

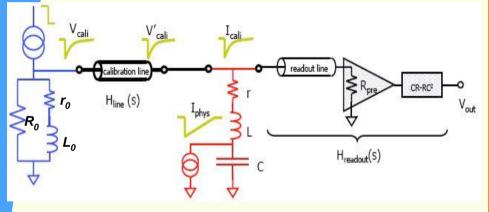
$$E(GeV) = f_{DAC \to \mu A} \times f_{\mu A \to GeV} \times \frac{M_{cali}}{M_{phys}} \times g_{ADC \to DAC} \times \sum_{i=1}^{n} a_i (S_i - P)$$

Signal reconstruction in EM Calorimeter

RTM Method

"Factorization of the readout response"

The readout response of each cell is probed by the calibration pulses, and directly transferred to the physics pulse prediction



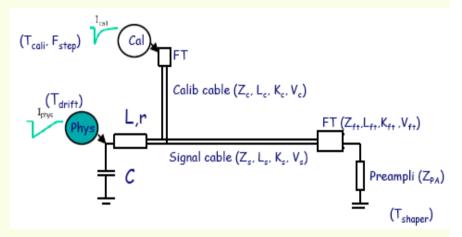
✓ The cell and pulse parameters (f_{step}, T_{cali}, rC, LC) are completely obtained from the calibration pulses

 \checkmark The only additional parameter required it T_{drift} (now from calculation, can be refined when enough data is collected)

This method was successfully used in 2004 test beam and is the standard ATLAS pulse shape prediction.

FPM Method

"Analytical model of the readout response"



✓ Uses measured parameters where possible

✓ A few parameters (T_{shaper}, Z_s) are left free to vary in order to match the measured calibration pulse response thus absorbing residual effects absent in the model

Currently, available only in the barrel

CALOR 2010

T_{drift} measurements: Layer 2 (EM barrel)

Prediction from absorber thickness measurement:

✓ Gap variation:

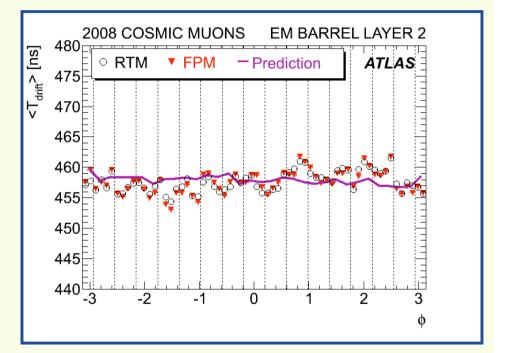
$$T_{drift} = T_{D0} (w_{gap} / w_{gap0})^{1+\alpha}$$

where:

$$w_{gap0} = 2.09 \text{ mm}$$

 $T_{D0} = \langle T_{drift} \rangle = 457.9 \text{ ns}$

No significant variations are expected from absorber thickness measurements.

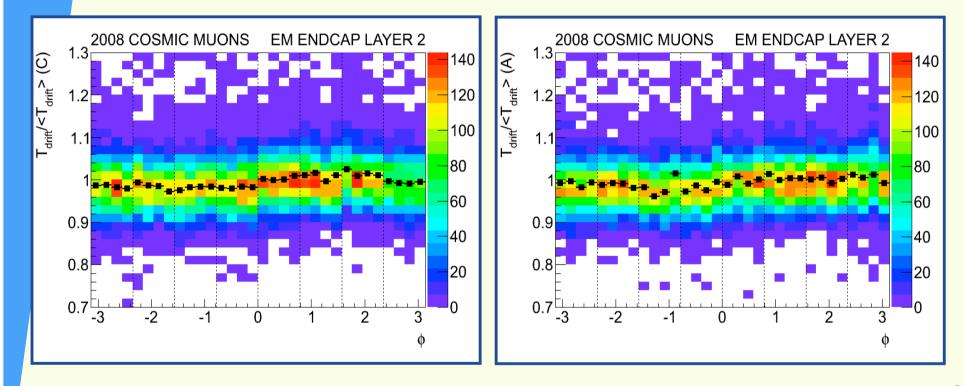


Asymmetry between $\phi > 0$ and $\phi < 0 \rightarrow (0.3 \pm 0.1)$ %

→ gravity can compress the lower part leading to slightly smaller gaps

T_{drift} measurements: Layer 2 (EM endcap)

\checkmark <T_{driff}> is the normalization to cancel out the variation with η



→ Asymmetry between φ>0 and φ<0 → (1.6 ± 0.2) %
→ gravity can compress the lower part leading to slightly smaller gaps

ATLA

Response uniformity from T_{drift} measurements

The drift time uniformity gives:

EM barrel: (1.28 ± 0.03) % ; EM endcap: (2.3 ± 0.1) %

✓ The contribution from the pure statistical fluctuations must be subtracted. For the barrel is negligible but for the endcap is (1.4 ± 0.1) %

The drift time uniformity leads to a dispersion of the response due to the gap variations of

✓ EM barrel: (1.28 ± 0.03) % · $(\alpha/(1+\alpha)) = (0.29 \pm 0.01)$ %

✓ EM endcap: (2.3 ± 0.1) % · $(\alpha/(1+\alpha)) = (0.53 \pm 0.02)$ %

Included systematic uncertainties:

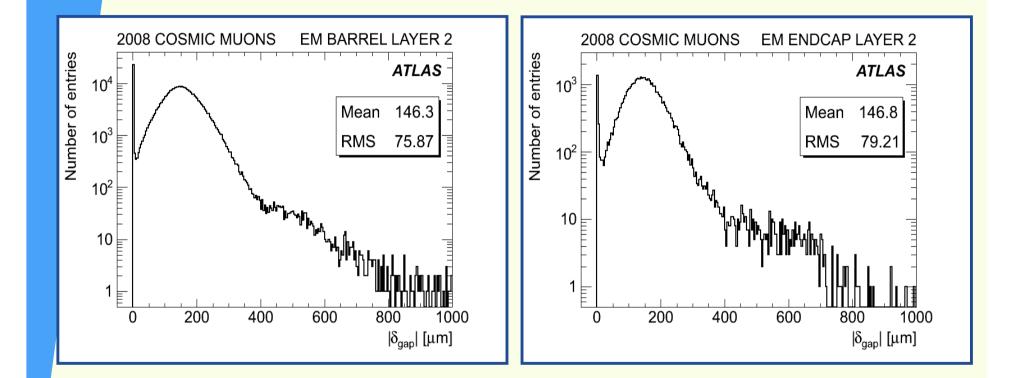
Changing the weighting, fit strategy or pulse reconstruction method

✓ The uncertainty on α contributes with: $^{+0.04}_{-0.02}$

> Final results:

✓ EM barrel: $(0.29^{+0.05}_{-0.04})$ % ✓ EM endcap: $(0.53^{+0.06}_{-0.04})$ %

Electrode-Shift measurements



 \Rightarrow On average 146 μ m deviation around exact middle of the gap (the ionization pulse shape is only sensitive to the absolute value of the off-centering).

 \rightarrow Only 67 μ m in the presampler.

CALOR 2010

CERN