<u>Commissioning of the</u> <u>Scintillator Pad Detector of</u> <u>LHCb with cosmic rays and</u> <u>first LHC collisions</u>

Ricardo Vázquez Gómez (UB/ICC)

on behalf of the LHCb collaboration

Outline

- Introduction: the LHCb calorimeter
- SPD commissioning
 - Time alignment
 - Calibration
- Conclusions

Introduction: the LHCb experiment

□ Single-arm forward spectrometer \circ Acceptance 10-250 mrad (V)/ 10-300 mrad (H) \longrightarrow 1.6 < η < 4.9

CALOR 2010, May 10-14, IHEP, Beijing

The LHCb calorimeter

Scintillator Pad Detector (SPD):

•Contributes to the first level of trigger (L0 at 40 MHz) by:

- Photon/Electron separation
- Multiplicity veto
- Multiplicity used in 2009 & 2010 collisions as minimum bias trigger.
- PreShower Detector (PS):
 - Separation of electrons, photons and $\pi^{\rm o}\,$ from hadrons at the LO trigger
 - Offline PID for electron and photon

ECAL & HCAL: talk by Irina Machikhiliyan **PS**: talk by Valentin Niess

The LHCb calorimeter

The SPD detector

- Layer of 6016 scintillating plastic cells.
 - 1.5 cm thickness.
 - 3 regions with different granularity at different distances to beam line (4x4 cm² inner, 6x6 cm² middle and 12x12 cm² outer).
- Read-out by 100 64-channel MAPMT coupled to a single Very Front End (VFE).
- Electronics apply a binary discrimination → dedicated calibration and time alignment.
 - Pre-calibration of threshold based on cosmic rays and test bench (offset, nphe, electronics gain, HV gain).

Time alignment

Objective and method

- Find the delay that maximizes the number of hits in the collision bunch crossing (T0) and has nothing before (Prev1).
 - Delays only applied by groups of 64 channels (VFE).
- LHCb trigger allows to readout consecutive bunch crossings.

Cosmic rays

• Although LHCb has **NOT** the optimal shape to take cosmic data more than 1.5M events were recorded.

Cosmic direction	Rate (Hz/m ²)	
Vertical	0.9	
Horizontal < 30º	0.0046	

• Using the energy deposited, we can define a track only with the calorimeter.

Cosmic track

Results With cosmics

Triggering on ECAL & HCAL coincidence.
Arrival time wrt integration provided by ECAL & HCAL.

Statistical precision of ~0.5 ns with 1M cosmic events. Delays implemented in October 2009.

With 7 TeV collisions

- Cosmic results provided an excellent starting point. SPD used as Minimum bias trigger.
- Minimum bias trigger.
- Timing is wrt LHC beam.
- Half of SPD kept as trigger while scanning with different delays the other half.

collision events. Delays implemented in April 2010. Calibration

Calibration strategy

- SPD efficiency to detect charged particles is a function of the threshold.
- Can be measured as:

 ε = # tracks with a hit in a cell / # total tracks in the cell

- Study the efficiency as a function of the threshold value for all cells. Compare with the theoretical expectation.
- Electronic resolution for setting the value of the threshold value is 5% of E_{MIP}. This sets our objective resolution.

Cosmic rays

- Cosmic selection criteria based on ECAL and HCAL signal:
 - Cosmic arrival time centered in the integration time window.
 - Select only low angle tracks wrt to perpendicular to avoid excessive ionization.
- Take data at threshold value of 1 E_{MIP}.
- Due to limited statistics, only an efficiency per VFE was extracted.
- Cells in the same VFE share HV value same global correction.
- Average deviation showed that pre-calibration was correct up to 15%.

LHC collisions

- Cell by cell calibration can be achieved.
- Take data at different threshold values (from pre-calibration) values and compare with the theoretical curve.

- Corrections extracted from fitting the observed efficiency vs threshold to the theoretical expectation.
- Efficiency at 0.3 E_{MIP} measures plateau efficiency (convolutes effects of misalignment, ghost tracks and dead zones in the detector).

Results

- Using ~12M pp collisions at $\sqrt{s} = 7$ TeV from April 2010.
- Current fitted values show a dispersion of 9.7% and central value shows no significant bias.
- Very preliminary results, as some cells not yet in the efficiency plateau at 0.3 E_{MIP}.

• This corrections will be applied in the hardware for future data taking.

Conclusions

- The SPD detector is fully operational.
- Cosmic rays provided a good starting point for time alignment and calibration.
- Fine time alignment has been achieved with collision data with a precision of 0.3 ns.
- The SPD cell intercalibration is better than 10%.
- Final corrections will be soon applied to achieved the optimal performance.

BACK-UP

Time alignment asymmetry

Zero crossing point gives the delay that has to be applied in the electronics

Calibration cosmic vs collisions

Efficiencies at 1MIP are compatible between cosmics and collisions. 10-15% dispersion wrt perfect calibration.

Calibration: track definition

Cosmics

- Use ECAL & HCAL deposits:
- □ Low angle tracks wrt perpendicular.
- □ Time arrival centered in integration window.
- □ Error in the extrapolation to SPD/PS plane.
- □ PS energy deposit
- □ Extrap inside cell at 3sigma level.
- Only 1 cell in SPD and 1 in PS.

Collisions

- •Use LHCb tracking system
- □ chi2/dof
- □ small error in extrapolation to SPD plane.
- □ low material traversed (avoid mult. scattering)
- □ border cell cut
- extrap inside cell with 1 sigma
- □ hit in same cell of SPD and PS
- □ PS energy deposit

Threshold	Min stat.	Max stat.
0.3	25544	3
0.5	24940	8
0.8	32913	12
1.0	39630	13