For Calor2010 conference @ IHEP - Beijing - China

Commissioning of the ATLAS Tile Hadronic Calorimeter with cosmic muons, single beams and first collisions

Outline

- 1) Tile Calorimeter in the ATLAS detector
- 2) Cosmic muons analysis: EM scale and uniformity
- 3) Timing calibration with single beam and cosmics
- 4) Performance with collisions

Other 2 talks on Tile calorimeter:

- M. Simonyan Hadron response and shower development in the ATLAS calorimeters
- G. Usai Implementation and performance of the signal reconstruction in the ATLAS Hadronic Tile Calorimeter

Atlas Tile Hadronic Calorimeter

- Is the central hadronic calorimeter of ATLAS
- Coverage $|\eta| < 1.7$ •
- Iron and plastic tile scintillators + WLS fibres + PMTs
- Granularity $\Delta \eta \times \Delta \Phi = 0.1 \times 0.1$
- Radial segmentation in 3 layers
- ~10000 channels for ~5000 cells (double readout)

Atlas Tile Hadronic Calorimeter

- EM scale calibration:
- Set with a beam of electrons on 11% of the modules and propagated to all the others with the calibration systems.
 Cs integral: deviation from target values after equalization
- <u>3 calibration systems:</u>

particles

Cs source

- → ¹³⁷Cesium: allow to equalize cell response (precision 0.3%)
- → Laser: Monitor the PMT gain, and the timing of the channels

Tile

scintillators

→ Charge injection: ADC counts to pC monitoring

• We used cosmics in the cavern to validate the EM scale set at test beam

rossetti@ifae.es

Commissioning with cosmic muons

Cosmic muons analysis

- Muons tracks are reconstructed in the Inner Detector and extrapolated at the calorimeter layers (3 longitudinal layers).
- Selected muons with: 10GeV < p_{muon} < 30GeV
- Muon paths in every crossed cell are computed.
- Study the response of the calorimeter and compare it with MC, using the mean dE/dx without the 1% of the events with the higher values (truncated mean)

Validation of EM scale with cosmics

- dE/dx in the various longitudinal layers in cavern and test beam is compared with MC
- Systematic uncertainties ~3-6% depending on the layer (more in backup slides).
- Good agreement between data and MC in test beam and cavern.
- EM scale validated with cosmics with the precision of 3%

Response uniformity

13-May-2010

D

323

39%

3.9

rossetti@ifae.es

2.4

3.0

Response uniformity

- Good uniformity in η and Φ (1.5-3%), within the systematic uncertainty of the method (~3-6%).
- The absence of data at Φ ~ 0,±π corresponds to a lack of "horizontal muons".

Timing calibration with single beam and cosmics

Splash events

- In a splash event the beam hit a completely closed collimator 140 m far from the center of ATLAS.
- ~10⁵ particles (mostly muons) pass through TileCal leaving ~10³ TeV of energy.

Time calibration with splashes - 2010

Time validation with cosmics

•Time intercalibration tested with cosmics

•The relative timing between cells was compatible with the one found in 2008 splashes

rossetti@ifae.es

Collision events

Cell response in collision data

- From November 2009 LHC delivered collisions at $\sqrt{s}=0.9$ TeV, 2.36 TeV and 7 TeV
- The cell energy spectrum in the 0.9TeV , 2.36TeV and 7TeV collisions, compared with MC and noise (random triggered events).
- Good data/MC description in 9 orders of magnitude for noise and energy deposits

Response vs η and Φ

- Energies are considered at EM scale.
- The energy response is:
 - at the same level of the MC
 - uniform in Φ
 - follows the shape of the MC in η

Conclusions

- TileCal participates in 7 TeV collisions with detector 97.3% operational.
- Individual calibration systems (Cs, Laser, Charge Injection) within design requirements, showing stability well below 1%.
- Performance with cosmic muons:
 - Good match of dE/dx between cosmics and testbeam
 - Cells uniformity at 2-3% within each layer
- Single beam allowed to finish the cells synchronization and results show a very good understanding of the detector timing.
- In first collision data we find a good agreement between data and MC and good response uniformity.
- TileCal is in good shape and ready for new more collisions.

Run Number: 152166, Event Number: 810258 Date: 2010-03-30 14:56:29 CEST

Di-jet Event at 7 TeV

Backup slides

Detector Status (April 2010)

- 7 modules over 264 are off (mostly for LV power supplies problems)
- The effects of up to 9 modules off on jet and MET resolution is negligible (seen with a detailed study)
- During the data taking for 7TeV collisions (started on March the 30th) ~3% of the cells is off or masked.

Number of masked cells (in April the 12th)

Selection

- One track reconstructed in the inner detector
- Tracks with at least 7 hits in SCT and Pixel
- Muon momentum between 10 and 30 GeV (in order to riduce radiative loses and multiple scattering effects)
- The muons passing in the borders in phi of the cells are rejected. We take a f ducial volume in phi of 0.09 (the total phi of a cell is 0.098)
- The Z coordinates of the entrance and exit point of a muon in a cell, must be different of at least 3 cm (@1.5 periods)
- Energy in the cell > 0
- Dead cells and dead modules are removed

φ Rejected muon Selected muon Selected Rejected muon muon

01-Oct-2009

Cosmics analysis: uniformity for all layers

23

Cosmic Analysis + testbeam results

Radial layer		А	BC	D	
Cosmic muons, LB	Data	$1.28^{+0.03}_{-0.04}$	1.32 ± 0.05	1.35 ± 0.04	
	MC	1.32 ± 0.04	1.35 ± 0.05	1.34 ± 0.04	
	Data/MC	$0.97^{+0.01}_{-0.02}$	0.98 ± 0.02	1.01 ± 0.01	
Cosmic muons, EB	Data	1.27 ± 0.06	1.29 ± 0.06	1.32 ± 0.05	
	MC	1.31 ± 0.03	1.32 ± 0.06	1.34 ± 0.05	
	Data/MC	0.97 ± 0.04	0.98 ± 0.03	0.99 ± 0.02	
Testbeam, LB	Data	1.25 ± 0.03	1.39 ± 0.04	1.39 ± 0.03	
	MC	1.30 ± 0.02	1.37 ± 0.03	1.36 ± 0.02	
	Data/MC	0.96 ± 0.02	1.02 ± 0.04	1.02 ± 0.02	
Double ratio $\frac{(\text{Data}/\text{MC})_{\text{Cosmic muons, LB}}}{(\text{Data}/\text{MC})_{\text{TB, LB}}}$		1.01 ± 0.03	0.96 ± 0.04	0.98 ± 0.03	

Cosmics analysis: systematic uncertainties

Various sources of systematic uncertainties were studied: truncation, momentum dependence, noise, trigger and event topology...

For every contribution, the associated parameter was varied in the given range and the systematic uncertainty contribution was evaluated as a half of the difference between the maximum and minimum resulting truncated mean

Systematic Uncertainties [MeV/mm] for Data and MC									
Uncertainty source		Long Barrel			Extended Barrel				
		Α	BC	D	Α	В	D		
Path	Data	±0.015	±0.029	±0.019	±0.048	±0.031	±0.016		
	MC	±0.006	±0.009	±0.013	±0.014	±0.015	±0.022		
	Data/MC ratio	±0.007	±0.016	±0.009	±0.034	±0.022	±0.018		
Momentum	Data	±0.023	±0.032	±0.033	±0.035	±0.042	±0.044		
	MC	±0.032	±0.042	±0.035	±0.020	±0.042	±0.044		
	Data/MC ratio	±0.009	±0.007	±0.004	±0.023	±0.004	±0.010		
Noise	Data	±0.007	±0.002	±0.002	±0.009	±0.004	±0.003		
	MC	±0.004	±0.002	±0.003	±0.003	±0.002	±0.002		
	Data/MC ratio	±0.002	±0.000	±0.001	±0.005	±0.001	±0.000		
Truncation	Data	±0.014	±0.014	±0.014	±0.014	±0.014	±0.014		
	MC	±0.014	±0.014	±0.014	±0.014	±0.014	±0.014		
	Data/MC ratio	±0.004	±0.005	±0.005	±0.003	±0.001	±0.001		
Top/Bottom	Data	±0.006	±0.006	±0.011	±0.008	±0.010	±0.008		
	MC	±0.015	±0.014	±0.014	±0.016	±0.037	±0.006		
	Data/MC ratio	±0.006	±0.014	±0.003	±0.006	±0.019	±0.010		
Global EM scale	Data	+0.005	+0.005	+0.005	+0.000	+0.000	+0.000		
		-0.013	-0.013	-0.014	-0.008	-0.008	-0.008		
	MC	-	-	-	-	-	-		
Livi Sculo	Data/MC ratio	+0.004	+0.004	+0.004	+0.000	+0.000	+0.000		
		-0.010	-0.010	-0.010	-0.006	-0.006	-0.006		
Total	Data	+0.033	+0.046	+0.042	+0.062	+0.055	+0.050		
		-0.035	-0.048	-0.043	-0.063	-0.056	-0.051		
	MC	±0.039	±0.047	±0.042	±0.033	±0.060	±0.052		
	Data/MC ratio	+0.014	+0.032	+0.011	+0.042	+0.029	+0.023		
		-0.016	-0.034	-0.014	-0.042	-0.030	-0.024		

Table 5: The individual contributions to the systematic uncertainty of the truncated mean dE/dx in cosmic muon Data and Monte Carlo. Analyses were performed with the ID-track method.

Splash events and time calibration

rossetti@ifae.es

Time calibration with splashes - 2008

- Cell times are corrected for the Time Of Flight (TOF) of the particles through the calorimeter
- The results showed a miscalibration of ~10/20 ns between the partitions.
- Corrections were retrieved in order to have the channels intercalibrated.

