Performance of the ATLAS Forward Calorimeters in First LHC Data

Dag Gillberg, on behalf of the ATLAS Liquid Argon Calorimeter Group

Dag Gillberg (Carleton)

Performance of the ATLAS Forward Calorimeter

The ATLAS Forward Calorimeters (FCal)

- Covers very forward region: 3.1 < |η| < 4.9
- Designed to operate in very high rate environment:
 Large noise from pileup

Motivation

- Improve reconstruction of missing transverse energy
- Tag forward jets (e.g. VBF→Higgs)
- Forward physics

FCal1

FCal2

FCal3

Layer	Absorber	LAr gap	Nelectrodes	N _{channels}						ł
FCal1	Cu	$269~\mu m$	24,520	2,016						l
FCal2	W	$376~\mu m$	20,400	1,000		Cu	W	VV	Brass	l
FCal3	W	508 μ m	16,448	508	'				;	1

Design of the FCal

Requirements

- Adequate E_T resolution with small non-Gaussian tails ($\sigma E/E = 1/\sqrt{E} + 0.1$)
- Fast response in order to minimize noise from pileup, O(25 ns)
- Radiation hardness cope with design luminosity of $\mathcal{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ at $\sqrt{s} = 14 \text{ TeV}$:

In FCal: 7 TeV/evt, 45 Watts

Placement

Original idea: FCal at z = 15 m from IP

Chosen location: inside endcap, z = 5 m

- \rightarrow **Smooth transition** from other calorimeters
- \rightarrow Natural **shielding** for muon system
- \rightarrow Less upstream material
- \rightarrow But more radiation (\times 9)

- Long and skinny electrodes: \sim 5 mm diameter, \sim 45 cm deep arranged parallel to the beam line
- Very narrow LAr gaps:
 - \rightarrow Fast readout
 - \rightarrow Avoids ion buildup
- Dense material (tungsten) for FCal2,3
 - \rightarrow limits hadronic shower spread
 - ightarrow compact, still 10 λ (28 X_0 FCal1)
 - \rightarrow placed deeper: less neutron albedo
 - \rightarrow heavy: 2×12 tonnes

FCal electrode arrangement and pulse shapes

Dag Gillberg (Carleton)

Performance of the ATLAS Forward Calorimeter

- Fast response due to small LAr gaps
- Good agreement in data with expected pulse shape derived from beam test
- Optimal filtering technique used to derive the amplitude A and timing τ of the pulse

$$A = \sum_{i=1}^{5} a_i S_i$$
$$A\tau = \sum_{i=1}^{5} b_i S_i$$

Example of a signal pulse in the second hadronic layer recorded in beam splash data.

Results from beam test

Cell energy distribution

Reconstructed FCal cell energies in 900 GeV collision data

Nice agreement between data and simulation

Distributions of jet properties, such as jet energy, transverse width and electromagnetic fraction are also in good agreement with Monte Carlo

Event Display

Position Measurement

- FCal close to the beam pipe
- Energy density increases with η

Average energy per cell:

- strongly depends on the transverse distance to the beam spot, r_T (or η)
- φ symmetric around the beam spot
- roughly described by:

 $E_{\text{avg}} = k \cdot r_T^{-m}$

Can measure location of the FCal by looking at E_{avg} over many events

FCal sensitive to translations relative to the beam spot

FCal1C

First measurements indicate that the FCal sits $\approx 2~\text{mm}$ low

 \rightarrow consistent with possible sag in support structure

The ATLAS Forward calorimeters

- Covers the forward region: $3.1 < |\eta| < 4.9$
- Novel design to operate under high radiation
- Performance in **beam tests** meets **design requirements**
- Pulse shapes agree very well with expectation
- Distributions of cell energies and jet properties in first collision data agree with MC expectations
- The position of the FCal can be measured in data

 \rightarrow Important for precise $\not\!\!\!\!/ \!\!\!\!/_{\mathcal{T}}$ and forward jet $p_{\mathcal{T}}$ reconstruction