

Liquid Xenon for Dark Matter performance of the XENON100 detector

Kaixuan Ni Shanghai Jiao Tong University Calor2010, IHEP, Beijing, May 12, 2010

XENON Collaboration

Westfälische Wilhelms-Universität Münster

MÜNSTER C. Weinheimer

SUBATECH D. Thers

MPIK Heidelberg M. Lindner

Max-Rlanck-Institut

für Kernphysik

arXiv:1005.0380

Direct Dark Matter Detection

Requirements for Direct DM Detection

Large target mass & low threshold & ultra-low background

Liquid Xenon for Dark Matter Search

- High scintillation yield (50,000 photon/ MeV), relative easy detection of the 175 nm light, almost intrinsic transparent → low energy threshold
- Available in large quantity (\$1000/kg) and scalability → large mass
- ◆ "Kr-free" Xe available commercially and can be further removed by purification → intrinsic background free
- ◆ discrimination between background (mostly electron recoils) and signal (nuclear recoils) events → more than
 99.5% background events are removed
- ◆ self-shielding → further bkg reduction

Two-phase Xenon Detectors for Dark Matter Detection

XENONI00 Detector Design

more detector photos at: <u>http://xenon.astro.columbia.edu</u>/

Requirements:

- digitize full waveform (320µs) of 242 PMTs
- no deadtime
- high rate capability for calibration

CAEN V1724 Flash ADC: 14bit, 100MHz

- circular buffer \rightarrow no deadtime
- on board FPGA: Zero Length Encoding

A typical event from XENON100 Event Signatures in XENON100

position dependence of signals

SI

XENON100: Position Dependence of Light Yield (White Pos.)

position dependence of signals

SI

S2

XENON100: Position Dependence of Light Yield (White Pos.)

K. Ni (SJTU)

position corrections

Cs137 (662 keV)

position corrections CsI37 (662 keV)

position corrections

Cs137 (662 keV)

Response to different energy gammas

the improvement of energy resolution in LXe makes it an interesting medium for other physics: neutrinoless double beta decay searches, or practical applications..

n/gamma discriminations

n/gamma discriminations

gamma rejection

more than 99% gamma events are rejected, while keeping ~50% of nuclear recoil events

The power of 3D position sensitivity + S2/S1 gamma rejection make XENON100 one of the most sensitive dark matter experiments.

Energy Calibration: determine the energy of nuclear recoils

Global fit of Leff measurements

