# A Digital Calorimeter for Dark Matter Search in Space

#### Xilei Sun EMC member IHEP

XIV International Conference on Calorimetry in High Energy Physics

## Contents

- 1. Introduction
- 2. Detector design
- 3. MC simulation study
- 4. Prototype study
- 5. summary

#### Some of the evidences for Dark Matter



#### Atoms Dark 4.6% Energy 72% Dark Matter 23% TODAY

DM is a difficult problem of physics

#### Content of the Universe - Pie Chart

WMAP data reveals that its contents include 4.6% atoms, the building blocks of stars and planets. Dark matter comprises 23% of the universe. This matter, different from atoms, does not emit or absorb light. It has only been detected indirectly by its gravity. 72% of the universe, is composed of "dark energy", that acts as a sort of an antigravity. This energy, distinct from dark matter, is responsible for the present-day acceleration of the universal expansion. WMAP data is accurate to two digits, so the total of these numbers is not 100%. This reflects the current limits of WMAP's ability to define Dark Matter and Dark Energy.

#### DM candidates from particle physics



Our detector is focus on WIMPs

## Detection mechanisms of WIMPs

• Direct detection:

detect signal of DM collisions with nuclei

 $DM + N \rightarrow DM + N + e\gamma$ 

until now, No clear signal, only bounds on cross sections and masses of WIMPS

• Indirect detection:

detect final decay products of DM annihilation

 $DM + DM \rightarrow SM + SM, SM = e, \mu, \tau, \gamma, W, q$  $SM \rightarrow e^{\pm}, \gamma, p, \overline{p}, \nu$ 

## Decisive evidence of DM



Example for gamma-ray spectrum of DM annihilation

## Flux of cosmic-ray



Range 30GeV—10TeV Flux of electrons: ~  $10^{-2}$ — $10^{-3}$  of protons Flux of gamma-rays: ~  $10^{-3}$ — $10^{-6}$  of protons

To identify electrons and gamma-rays, excellent capability of proton rejection with power ~10<sup>5</sup> is necessary

## **Space Station of China**



2020 Space Station will be built

A payload for dark matter search is proposed by IHEP

the detector should has capabilities : Energy range 30GeV-5TeV (cover WIMP mass range) Energy resolution <5%(detect line signature requirement ) Background rejection power > 10<sup>5</sup> (suppress proton background requirement) Total power <500 Watts Total mass <1.5 Tons

## **Detector Concept design**

# The detector has two chief components:

#### Anti-Coincidence Detector(ACD)

ACD is a positional sensitive plastic scintillator detector in order to reject charged particles for the gamma-rays observation.

**Digital Imaging Calorimeter(DIC)** DIC is a 3D Crystal array, each crystal is a little cube with one face coupled with WLS fiber which collect and guild photons to ICCD camera. All separate cubes are glued together.



#### ACD structure



ACD is composed of 1x1x80cm plastic scintillator array along x and y direction which covers more than 5/6 of the main body. Each scintillator has a WLSF inbuilt in a groove on surface. Read out devoice is SiPM.



ACD is positional sensitive so the incident position of charged particle can be got associated with the shower axis in DIC.

## Trigger structure

One fiber attach the surfaces of a string of crystals All fibers coupled with one PMT when a high energy particle incident, we can get a fast signal(<100ns) which direct proportion the particle energy.

So a threshold can be set for trigger.



## Chief feature of Detector

- Digital imaging so has no amplitude saturation problem
- 5 sensitive faces so has a large field of view
- High level of granularity so has Good particle identify power and Good angle resolution
- CCD read out with low power ~10w
- ACD is positional sensitive to suppress backflash charged particle



# Simulation study on performance

- Energy  $N_{hit}$  relationship
- Energy resolution
- Angular resolution
- Gamma/proton separation

#### Detector geometry



## Energy N<sub>hit</sub> relationship



## **Energy resolution**



of 1000GeV gamma-ray

Energy resolution compare of different granularity 1.5—4.5 cm

## Angular resolution



## Particle Identification(PID)



3D gamma-ray shower

2D gamma-ray shower

Two main differences :

1.Proton induced showers are longitudinally wider than electron showers due to the spread of secondary particles in nuclear interactions.

2.An electron induced shower will start and die off earlier than a proton shower



3D proton shower

2D proton shower

## Gamma/proton separation by TMVA



TMVA output of gamma/proton separation

The input is Signal: gamma-ray 100GeV 140000 events Background: proton 100GeV—5000GeV power law 2.7 1M events



## Gamma/electron separation by TMVA



TMVA output of gamma/electron separation

Difference: Electron shower start earlier than gamma-ray shower

> The input is Signal: gamma-ray 100GeV 140000 events Background: electron 100GeV 160000 events



## Experiment study

- Unit structure
- Prototype 2x2x6 array
- Muon test
- Capacity analysis

#### unit structure



Crystal side length: 2.5cm WLS fiber diameter: Φ300um



## Unit muon test



muon MIP spectrum

## Prototype 2x2x6 array



# Schematic view of the muon test system



#### Muon test result



#### Signal is clear And the system works well

218.9

163.3

٥0 هو

Signal Noise

=8



muon event

## Capacity analysis



Magnification of FOT and size of CCD are the key factors for capacity.
For φ300um fiber with 100um interval and 450000 pixels CCD
Magnification capacity

2:1
~4500 fibers
5:1
~28000 fibers

28000 can cover a 30x30x30 array
Only one CCD system needed for the whole calorimeter.

## Summary

- A scheme of 60cm cube CsI(Na) array is proposed: 5 faces sensitive~3.3m<sup>2</sup>sr,digital image,32r.l. ~1T, 30GeV—5TeV
- The preliminary simulation is done. gamma/proton separation ~5x10<sup>5</sup> (95% eff. DIC only) electron/proton separation ~1x10<sup>4</sup>(45% eff. DIC only) Energy resolution ~4% Angular resolution ~0.5°
- The prototype has been built and test.