

Enhancement of hadron/electron discrimination in calorimeters by detection of the neutron component.

NEUCAL Experiment

O.Adriani^{1,2}, L.Bonechi^{1,2}, M.Bongi², S. Bottai², M.Calamai^{2,4}, G.Castellini³, R.D'Alessandro^{1,2}, M.Grandi², P.Papini², S.Ricciarini², <u>G.Sguazzoni²</u>, G.Sorichetti¹ 1 University of Florence, 2 INFN Section of Florence, 3 IFAC–CNR Florence, 4 University of Siena

e/hadron discrimination in HEP

Important requirement: crucial in Astroparticle Physics / **EM calorimeters**: very good discrimination capability in a wide energy range / **Depth, weight, power constraints in space missions**.

Shallow calorimeters (circa ~0.6λ_I, a la PAMELA detector) / protons can be tagged as electrons: very extensive leakage; similar energy release; similar shower development.

The neutron counting handle...

Neutron production for hadronic showers (hadronic interaction, nuclear excitation) larger than EM showers (Giant Resonances only).

NEUCAL: concept and implementation

NEUCAL = new idea: study of the **moderation phase** using plastic scintillators (rich in hydrogen) as active moderator (signals from neutron scattering). Standard ³Hetubes to complement and validate.

NEUCAL design: detector geometry based on FLUKA simulations (cross check with GEANT4)
Use case: NEUCAL downstream a 30X₀ homogeneous BGO calorimeter (i.e. CALET experiment).

Neutron yield at high energies

Neutron per event vs. time Protons 1TeV / Electrons 400GeV (similar deposited energies) *Possible discrimination region:10-100ns* / Different vertical scale!

Neutron arrival time vs. energy

Design of Neucal for the Test Beam

3x3 Modules.

Each module: 3x Fast Scintillator plates (25cmx8cmx1cm): ELJEN TECHNOLOGY, EJ-230 Polyviniltoluene (BC-408)

PMT: Hamamatsu R5946

Light guide: plexiglas / Optical grease Saint Gobain BC-630

5x ³He tubes: Canberra 12NH25/1

Pictures from the assembly

NEUCAL Test Beam for MC validation

Goal: validate the Monte Carlo simulations.

CERN SPS, line H4 π⁻ 350 GeV (230k events) e⁺ 100GeV (240k events) e⁺ 150GeV (50k events)

NEUCAL: Parasitic Separate readout

Shallow tungsten calorimeter (**CalW**); CREAM2 prototype: 16X₀ Tungsten, fibres.

Readout electronics...

...to capture a **long time exposure** of the detector after the trigger, looking for neutron signals for up to **1ms**.

CAEN V1731	CAEN V1720			
VME standard 8 ch				
500MSample/s	250MSample/s			
8 bit ADC	12 bit ADC			
2MB/ch memory				
16ns jitter	32ns jitter			
On-board Zero Suppression, ZS				

Need to operate in ZS to avoid huge data size and readout time / **Firmware bug in ZS mode**, fast signals not recognized: passive filters to "slow" the signals / Reflections introduced / **Blind below ~1µs**.

Small sample of data without ZS and no filters!

Test Beam Configurations

Data collected in different configurations: scan of detector (beam impact point), different working parameters, PMTs and tubes voltages Digitizer boards parameters (thresholds, data compression...)

Monte Carlo samples

GEANT4 simulation of the Test Beam setup: readout chain response not implemented; comparison on scintillator energy and ³He-counter pulses versus time.

Physics lists (HE hadronic showers with low energy neutron transportation):

QGSP_BERT_HP *Quark-Gluon String Precompound, Bertini model, low energy neutrons*

QGSP_BIN_HP Quark-Gluon String Precompound, Binary cascade model, low energy neutrons

Typical sample size: 20k for pions; 80k for positrons.

G4 description of Neucal & TB setup

Pion event display

9x scintillator views, 2x triggers, 5x ³He tubes

³He-counters

Countings/ev vs. log₁₀(t/µs) Significant difference between QBERT and QBIC for pions e⁺: **contamination** (beam) at t>30-100µs

Scintillator data analysis

LATE	1µs <t<1ms< th=""><th>ZS</th><th>e⁺ 100GeV CFG0 (39k)</th><th>π⁻ 350GeV CFG3b (76k)</th></t<1ms<>	ZS	e⁺ 100GeV CFG0 (39k)	π⁻ 350GeV CFG3b (76k)
EARLY	t<1µs	no ZS	e⁺ 150GeV CFG0 (7k)	π⁻ 350GeV CFG2b (18k)

Signal (=n candidate): single isolated pulse (HIT), E_{HIT}>0.3MeV

Backgrounds	Rejection		
Filter reflections (ZS)	Veto of specific time delays		
Off trigger particles	No coincidences		
Saturation phenomena	No abnormally long signals		

Background is generally larger for positrons (EM shower = larger strain).

Energy calibration: lab measurements with cosmics of all 9 modules **Time synchronization**: of Data vs. MC / t_0 = arrival of the shower

All plots normalized to the number of showered events $(1e^+, \sim 0.6\pi^-)$.

Late ZS

E_{HIT}/ev [MeV] vs. log₁₀(t/μs) - Module #3 Other modules similar / Residual contamination at large t Possible future development: late (1-10 μs) n- signals (nucleus captures)

Early: pions all modules

E_{HIT}/ev [MeV] vs. log₁₀(t/µs) / Side: ~OK; Central: shower contamination

Early: e+ all modules

EHIT/ev [MeV] vs. log₁₀(t/µs) / Side 12bits: ~OK / Side 8bits: saturation

Bottom-Side 12bit ADC counters t<200ns

E_{HIT}/ev [MeV] vs. t [μs] - Module #7 & #9 *t*<30-40ns : shower contamination, to be investigated in better conditions

Conclusions

A novel technique for **neutron detection** for hadron/electron discrimination consisting of **active moderation** investigated.

Prototype (**Neucal**) designed and assembled; use case: astroparticle physics application.

Test beam at CERN SPS with π and e⁺ beams beyond a calorimeter.

Difficult measurement. A lot of lessons learned.

Results encouraging, but not conclusive. Refinements needed to keep instrumental and beam effects under control.

Next future:

-- analysis of data collected at nTOF (CERN neutron spallation facility);

-- new test beam with new apparatus and improved DAQ.

Extra slides

Fluka vs. G4: NEUCAL single-n efficiency

23

Single-n Fluka vs. G4 comparison

Simulated energy release inside one scintillator layer

Fluka vs. Geant4 comparison.

entries

No ZS (no filter) pulse shapes

8bits ADC / 12bits ADC

Filter

Passive filter implemented to get around the firmware problem of CAEN V1731 and CAEN V1720.

Late signal composition

// 100k single 1MeV neutron events;

- // Look for late produced (t>100ns) particles with E_{KIN} >10keV;
- // Two categories: soft $E_{KIN} < 3MeV$, hard $E_{KIN} > 3MeV$.
- // Particles originating in the active ³He counters volume ignored.

	Note	particle	number	per 1k N	process	material
SOFT <3MeV	Charged [not due to photons: no compton, no conversions, no photoelectric]	р	62	0.62	NeutronInelastic	Air
		¹⁴ C	28	0.28		Air
		¹⁶ O	4	0.04	hElastic	Air
		¹⁴ N	2	0.02		Air
	Neutrals [no eBrems, no annihil]	gamma	5441	54.41	nCapture	Scintillator
			531	5.31		Al
			135	1.35		NiCu
			1	0.01		Air
HARD >3MeV	Neutrals [no eBrems, no annihil]	gamma	377	3.77		Al
			103	1.03		NiCu
			74	0.74		Scintillator
			5	0.05		Air