XIV International Conference on Calorimetry in High Energy Physics Beijing, May 10 - 14, 2010

The Fluorescence Detector of the Pierre Auger Observatory

> A Calorimeter for UHECR

Petr Nečesal

for the Pierre Auger Collaboration

Institute of Physics AS CR, v. v. i., Prague, Czech Republic

Outline

- Ultra High Energy Cosmic Rays (UHECRs)
- UHECR detection
- Pierre Auger Observatory
 - Fluorescence detector and energy calibration
 - Uncertainties
 - Exposure
 - Selected results from hybrid detector

UHERC detection

- Direct methods
 - satellites, balloons..
 - unable to measure at 'higher' energies due to small statistics
- Indirect methods air showers
 - $E > 5 \cdot 10^{18} eV$
 - high statistics needed
 - understanding of systematics is essential
 - charged ground particles
 - array of Cherenkov detectors, scintillators, muon detectors
 - isotropic fluorescence light
 - fluorescence detectors
 - energy and direction reconstruction

FZŰ

0

100

200

300

400

500

600

700 vertical depth (q/cm^2)

Pierre Auger Observatory (1)

- 3000 km² experiment at high altitude (1500 m above see I.) in province Mendoza in Argentina
- 91 Institutions, 18 countries, 487 collaborators
- June 2008 Southern site completed
- Activities started on the Northern site, Colorado USA

FZŰ

Pierre Auger Observatory (2)

First experiment with hybrid detection technique

- 4 fluorescence detectors with 6 telescopes each (30° x 28°)
- 1660 water Cherenkov tanks
 - 1,5 km triangular grid
 - 3 9" Photonis XP1805 PMTs per station
- 12 % events with hybrid reconstruction
- Low energy extension infill & fluorescence telescopes (AMIGA + HEAT)
- Extensive program of atmospheric monitoring
- Wide area wireless radio system

FZŰ

Cascade plane

Impact point

Fluorescence detector

Longitudinal profile from FD telescopes

- light from excited nitrogen molecules due to electromagnetic _ energy losses of charged particles
- ~ 20 photons per MeV emitted between 300 and 400 nm
- profile integral \rightarrow 90 % of the primary particle energy at 10¹⁹ eV
- atmosphere is an efficient calorimeter! =>

Hybrid detection technique (1)

Surface Detectors

- + 100 % duty cycle
- + geometric acceptance
- only last stage of shower development observed
- energy scale model dependent
- Angular resolution < 1 °
- Threshold at 10¹⁸⁵ eV

Fluorescence Detectors

- + observation of longitudinal shower development
- + (almost) model independ. calorimetric E
- \approx 12 % duty cycle
- acceptance depends on distance and atmosphere (model depend.)
- Angular resolution 0.6°
- Threshold $\approx 10^{180} \text{ eV}$

Petr Nečesal

CALOR 2010, May 12th, 2010

Hybrid detection technique and energy calibration (2)

4 x 6 FD telescopes with 440 PMTs each

FZŰ

Uncertainties on the reconstructed energy from FD

- 1. signal in the PMTs
 - telescope absolute calibration 9 %
- 2. photons at the FD
 - Iongitudinal shower profile reconstruction 10 %
- 3. fluorescence photons emitted at the shower axis
 - ➢ aerosol optical depth 7 %
 - molecular optical depth 1 %
 - fluorescence yield 14 %
- 4. energy deposit per slant depth
 - invisible energy correction 4 %

Systematics in total ≈ 22 %

Isotropic fluorescence light

- charged particles (mainly e^{\pm} of EAS excites N₂ molecules in air
- several emission bands between 300 and 430 nm
- number of emitted photons is proportion to E deposited in the atmosphere
- FD measures longitudinal development profile $\frac{dE}{dX}(X)$ of the air shower

⇒ Fluorescence yield (≈ 5 photons / MeV at 293 K and 1013 hPa from 337 nm band)

Fluorescence Yield at sea level

• Comparison of absolute fluor. yield for 0.85 MeV electron in US Std. atmosphere

FZŰ

Seasonal and Altitude dependence for Auger

for a 0.85 MeV electron

FZŰ

CALOR 2010, May 12th, 2010

FZŰ

Correction Factor for "Missing Energy"

CALOR 2010, May 12th, 2010

Exposure

- Hybrid exposure ٠
- Growth of the hybrid exposure from November 2005 up to May 2008:

SD exposure

٠

٠

- atmospheric conditions (aerosols, background light,..)
- detector configuration
- primary energy (higher $E \rightarrow$ more light \rightarrow larger exposure)
- time dependent detector MC
 - reproduce actual data taking conditions

FZŰ

Selected results from hybrid detector (1) -spectrum

- Hybrid spectrum of ultra-high energy CR:
 - evidence for ankle and investigation of its position

Selected results from hybrid detector (2) - composition

<X_{max}> Auger data suggest mixed composition

 $RMS(X_{max})$ shows strong trend to small ٠ $X_{\mbox{\tiny nak}}$ fluctuations (large mass of primary particle) at high energy

50

40

30

20

10

10¹⁸

iron

10¹⁹

E [eV]

Selected results from hybrid '-+-ctor (3) - photon limits

- 'Top-down' scenarios (e.g. SHDM decay)
- Photon showers have large X_{max} , with Auger FD possible to set first photon limits bellow 10 EeV ever

CALOR 2010, May 12th, 2010

Summary

Pierre Auger Observatory steadily operates in full design size!

- first CR detector with hybrid technique
- atmosphere is an efficient calorimeter!
- energy spectrum
- arrival directions
- shower profiles and X_{max}

Scientific results and prospects

- CR mass composition
- Studies of hadronic interactions at ultra-high energies
- Identification and studies of the sources
- Auger North

AUGER

Systematic uncertainties in the hybrid rec. due to atm.

Systematic uncertainties					
Source	log (E/eV)	$\Delta E/E$ (%)	$RMS(\Delta E/E)$ (%)	$\Delta X_{\rm max}~({\rm g~cm^{-2}})$	$RMS(X_{max}) (g cm^{-2})$
Molecular light transmission and production					
Horiz. uniformity	17.7-20.0	1	1	1	2
Quenching effects	17.7-20.0	+5.5	1.5-3.0	-2.0	7.2-8.4
p, T, u Variability	17.7-20.0	-0.5		+2.0	
Aerosol light transmission					
Optical depth	<18.0	+3.6, -3.0	1.6 ± 1.6	+3.3, -1.3	3.0 ± 3.0
	18.0-19.0	+5.1, -4.4	1.8 ± 1.8	+4.9, -2.8	3.7 ± 3.7
	19.0-20.0	+7.9, -7.0	2.5 ± 2.5	+7.3, -4.8	4.7 ± 4.7
λ-Dependence	17.7-20.0	0.5	2.0	0.5	2.0
Phase function	17.7-20.0	1.0	2.0	2.0	2.5
Horiz. uniformity	<18.0	0.3	3.6	0.1	5.7
	18.0-19.0	0.4	5.4	0.1	7.0
	19.0-20.0	0.2	7.4	0.4	7.6
Scattering corrections					
Mult. scattering	<18.0	0.4	0.6	1.0	0.8
	18.0-19.0	0.5	0.7	1.0	0.9
	19.0-20.0	1.0	0.8	1.2	1.1

- Shower light profile with a large gap due to the presence of an intervening cloud
- Uncertainties from combined all atmospheric measurements:

$$RMS\left(\frac{\Delta E}{E}\right) \approx 5 \pm 1\%$$
$$RMS(X_{\text{max}}) \approx 11 \pm 1 \ g.cm^{-2}$$

Electromagnetic Shower

- Primary particle is electron or positron
- Hadronic interaction yields in $\pi^0 \rightarrow$ decay into 2 γ

22/20

Hadronic Shower

- primary particle is nucleus
- for heavier nuclei superposition of A proton showers

Shower Maximum

shower size N_e

E FZŰ

CALOR 2010, May 12th, 2010

T.Waldenmaier et al., 29th ICRC, 2005

CALOR 2010, May 12th, 2010

balloon launching station

Real EAS Event from Auger

Petr Nečesal

CALOR 2010, May 12th, 2010

Energy determination from hybrid events

- take S₃ value from SD vs.
 energy from FD
- fit line through data Log (E) = $-0.79 + 1.06 \text{ Log}(S_{3})$
- energy conversion factor

E = 0.16 S₃₈¹⁰⁶

(E in EeV,
$$S_{\mathfrak{B}}$$
 in VEM)

Uncertainty: 15% at 3 EeV 40% at 100 EeV

P. Sommers, Auger Collab. 29th ICRC, 2005

r

That's also working for Auger

Neutrino limit

Single flavour neutrino limits (90% CL)

- Data from SD
- Earth-skimming (upgoing) τ neutrino
- No neutrino discovery, but approaching GZK neutrino limits

Combined energy spectrum

Fig. 4. The fractional difference between the combined energy spectrum of the Pierre Auger Observatory and a spectrum with an index of 2.6. Data from the HiRes instrument [3], [21] are shown for comparison.