ATLAS LAr Calorimeter Readout Electronics Upgrade R&D for sLHC

Hucheng Chen On behalf of the ATLAS Liquid Argon Calorimeter Group May 11th, 2010

a passion for discovery

Outline

Introduction

- ATLAS Liquid Argon Calorimeter
- Current LAr Readout Electronics
- LAr Electronics Upgrade Motivations
- Readout Electronics Upgrade R&D Studies
 - Front-end mixed-signal ASIC design
 - BNL, Columbia Univ., Univ. of Penn., INFN Milan, IN2P3
 - Radiation tolerant optical link in Silicon-on-Sapphire
 - SMU
 - High speed back-end processing unit based on FPGA
 - BNL, Univ. of Arizona, SUNY Stony Brook, IN2P3 LAPP, INFN Milan, Dresden, CERN
 - Power supply distribution scheme
 - BNL, Yale, INFN Milan, Univ. of Milan
- Summary

ATLAS Liquid Argon Calorimeter (LAr)

Liquid Argon Calorimeter

- Electromagnetic Barrel (EMB)
 - |η|<1.475 [Pb-LAr]
- Electromagnetic End-cap (EMEC)
 - 1.375<|η|<3.2 [Pb-LAr]
- Hadronic End-cap (HEC)
 - 1.5<|η|<3.2 [Cu-LAr]
- Forward Calorimeter (FCAL)
 - 3.1<|η|<4.9 [Cu,W-LAr]

3

NATIONAL LABORATORY

Current LAr Readout Electronics

- 182,468 detector channels
- **Front-end Electronics**
 - 58 Front End Crates
 - 1524 Front End Boards
 - ~300 other boards (calibration, • tower builder, controller, monitoring)
 - 58 LV Power Supplies
 - ~1600 fiber optic links between FE and BE
- **Back-end Electronics**
 - **16 Back End Crates**
 - **192 Read Out Driver Boards**
 - 68 ROS PCs •
 - ~800 fiber optic links between **ROD** and **ROS**

Brookhaven Science Associates

Current Front-end Architecture

FEB Complexity

- 11 ASICs
- Several technologies with obsolescence of some technologies (e.g. DMILL)
- 19 voltage regulators
- Analog pipelines (SCA)
- ~80W/board, water cooled
- Radiation/lifetime issues
 - Qualified for 10 years LHC operation
 - Limited number of spares (~6%)

- Other limitations
 - L1 trigger rate <= 100kHz
 - L1 trigger latency <= 2.5µs
 - Consecutive L1 trigger spaced more than 125ns
 - Fixed analog trigger sums
- FEB Upgrade
 - Component-level replacement impossible
 - Full replacement based on current technologies
 - No increase of power budget

Proposed Front-end Architecture

- Proposed FEB baseline architecture keeps many options open
 - Shaping and gain settings
 - Analog vs. digital pipeline
 - On/off detector pipeline
 - Analog vs. digital gain selector
 - Possibly provide analog trigger sums to decouple potential trigger upgrade

- FEB upgrade propagates to other boards
 - Digitization at each bunching crossing, data rate is ~100Gbps/board
 - Higher speed, higher radiation resistance optical link
 - LV power supplies
 - Back-end electronics
 - Possibly interface to L0Calo/L1Calo digitally

Analog Front-end R&D

Electror

- Quad preamplifier & shaper ASIC in IBM 0.13µm SiGe 8WL
- Preamplifier
 - Based on low noise line-terminating preamplifier circuit topology used presently
 - High breakdown devices allow for higher swing to accommodate full 16-bit dynamic range
 - $e_n \sim 0.26 nV/\sqrt{Hz}$
 - ENI ~ 73nA RMS (included 2^{nd} stage and for $C_d = 1nF$)
 - P_{tot} ~ 42mW
- Shaper

Brookhaver

- 16-bit dynamic range with two gain settings
- $e_n \sim 2.4 nV/\sqrt{Hz}$
- ENI ~ 34nA RMS
- P_{tot} ~ 130mW (combined 1X, 10X channels)
- Uniformity: better than 5% across 17 tested ASICs
- INL: < 0.1% over full scale of 1X and 10X channels

Analog Front-end: Preamp & Shaper

LAPAS testing with hand wired prototype

- All measurements as expected
- DC results very close to simulations, shaper peaking time is 37ns as predicted
- Preamp and shaper transient response is good, no shaper control tuning required
- Common mode auto-tracking is excellent
- No significant concerns about first TID results
- New test PCB is available, full characterization is still in progress
- Future plan: explore other SiGe technologies (IHP, AMS) and feasibility of CMOS only design

Test Printed-Circuit Board

Brookhaven Science Associates 0

H. Chen - ATLAS LAr Electronics Upgrade

8

COTS ADC Radiation Test

- ADC is the most technologically challenging component in the new architecture
- COTS ADC radiation test
 - Verify radiation tolerance of commercial ADC
 - Testing of few commercial devices: ADI-AD9259, ST-RHF1201, TI-ADC5821
 - Analysis on-going from data taken under live proton irradiation at Mass. General Hospital
 - Preliminary results
 - ST-RHF1201 suffers dynamic range reduction after ~300krad
 - ADI-AD9259 draws excess current
 - More radiation test is planned

Mixed-signal ASIC: ADC Development

- 12-bit pipeline ADC design
 - 1.5 bits/stage with digital error correction
 - Critical component: amplifier in every stage
- Nevis09 chip
 - 12-bit precision OTA in IBM 0.13µm CMOS 8RF
 - Implemented in chip: OTA + cascade of two T/H to achieve S/H effect for testing
- Testing is still on-going, preliminary test results: 65dB

Dime ~2 euro cents (in size)

Radiation Tolerant Optical Link

- SMU_P1 in 0.25µm Silicon-on-Sapphire consists of the following function blocks
 - LOCs1, a 5Gbps 16:1 serializer •
 - The LCPLL, a 5GHz LC VCO based PLL •
 - The CML driver
 - A divide-by-16 circuit •
 - A varactor, a voltage controller capacitor
 - An SRAM block

Brookhaven Science Associates

Testing is still on-going, preliminary test results

00/11/2010

- Serializer: range 3.8 to 6.2Gbps, power 507mW, T_{j} ~ 62ps, eye opening ~ 69% UI at 1e-12
- LCPLL: tuning range 4.7 to 5GHz, power 121mW at 4.9GHz, $R_j < 2.5ps$, $D_j < 17ps$

11

Radiation Tolerant Optical Link

SMU_P1 in 0.25µm Silicon-on-Sapphire consists of the following function blocks

- LOCs1, a 5Gbps 16:1 serializer •
- The LCPLL, a 5GHz LC VCO based PLL
- The CML driver
- A divide-by-16 circuit •
- A varactor, a voltage controller capacitor
- An SRAM block

Brookhaven Science Associates

Testing is still on-going, preliminary test results

- Serializer: range 3.8 to 6.2Gbps, power 507mW, $T_j \sim 62ps$, eye opening ~ 69% UI at 1e-12
- LCPLL: tuning range 4.7 to 5GHz, per at 4.9GHz, R_j < 2.5ps, D_j < 17per

00/11/2010

Readout Driver (ROD) Upgrade R&D

14 Half Barrel **FFC** 14 FEBs

100 Gbps

- Data bandwidth of entire LAr w. 1524 FEBs > 150 Tbps
 - High speed parallel fiber optical • transceiver (e.g. 12 fibers @ **10 Gbps)**
- ROD R&D
 - Address issues of bandwidth and • achievable integration on the ROD
 - **ROD based on FPGA high speed** • SERDES and FPGA based DSP to take advantage of parallel data processing
 - Perform L0/L1 trigger sum digitally • after E-conversion with flexible and finer granularity within a realistic latency budget
 - Follow up and explore technology • evolution (e.g. FPGA, ATCA)

Sub-ROD and Injector Development ATCA Sub-ROD Sub-ROD Injector

- Sub-ROD and Injector in US
 - **ATCA** form factor
 - 75Gbps parallel fiber optic links
 - **FPGA SERDES: Xilinx Virtex 5 FX on** Sub-ROD and Altera Statix II GX on Injector
- Slice integration test
 - **SNAP-12** parallel optical transceiver from Emcore and Reflex Photonics
 - BERT from 2.4 to 6.25Gbps per link •
 - Used as test stand for latency study •

ROD R&D in ATCA Platform

- ATCA test board development in LAPP, France
 - ATCA controller tests: I/O, IPMI management, Ethernet communication
 - ROD demonstrator tests: board configuration, ATCA compliant power supplies, FPGA design
 - Software development based on Linux and GNU GCC
 - IPMI (Intelligent Platform Management Interface) Controller for ATCA boards in FMC format provides ATCA ROD board management
 - In development and will be available this summer
- ATCA ROD test bench in Dresden, Germany
 - Radisys Promentum ATCA sys-6010 crate with 10GbE and dual star backplane
 - 1 ATCA Sub-ROD from BNL
 - 10GbE Switch with XFP transceiver with 10GbE connection to server PC
 - Installation of ROS software to simulate real data transfer and DAQ system as in ATLAS
 - Investigating 10GbE implementation
 - Test integrated ROD/ROB functionality, also useful for normal ROD tasks and data integrity tests with PC

Radiation Hard Front End Power Supply

Present power supply scheme

- 380 VAC/3 phases → 280 VDC → Rad-tolerant DC-DC converters w. 7 voltages → 19 regulators on FEB
- Upgraded power supply system
 - Radiation environment assumed to scale x10
 - Power budget remains approximately the same
 - Rationalization of the number and levels of the voltages
 - Use of point of load converters

Two possible architectures

- Distributed power architecture: main DC-DC converter + POL converters
- Intermediate bus architecture: main DC-DC converter + 2nd bus voltage w. POL converter + LDO regulator
- Two POL converters tested in FEC for noise evaluation
 - LTM4602: 6A High Efficiency DC/DC µModule
 - IR3841: Integrated 8A Synchronous Buck Regulator
 - Noise shielding necessary if inside FEC
 - Ready for radiation tests

16

Summary

- Radiation levels and probably natural aging of the electronics will require an upgrade of the front-end electronics
- Opportunity to apply modern technology and revise architecture
 - Continuous data streaming off-detector
 - Fully digital L0/L1 trigger information with flexible granularity, while interface to trigger system will be guided by physics and MC simulation
- Major challenges
 - Modern technology requires lower voltages, difficult to maintain the required large dynamic range and stringent noise performance
 - Critical radiation hard components (analog front-end, ADC, optical link and power supply)
 - Extremely large bandwidth off-detector readout
 - High performance data handling with very strict latency budget
- R&D is progressing smoothly
 - 3 different ASIC/chiplet available, more test results expected soon
 - Priority for the next 2-3 years to demonstrate the feasibility of the readout architecture in different scales

Backup Slides

Brookhaven Science Associates 05/11/2010

LHC Upgrade Expectation

LHC upgrade includes 2 phases

- sLHC (phase 2 upgrade) expected to start up ~2020
- ATLAS LAr calorimeter plans for LHC phase 2 upgrade
- New requirements to LAr calorimeter readout electronics
 - Radiation environment
 assumed to scale x10
 - Total power consumption kept same

New Readout Challenges at sLHC

- Radiation hardness: 10 times more radiation
- **Dynamic Range**
 - EM: from 50 MeV to 3 TeV (10 mA): 16 bits
 - HEC: up to 1 TeV (0.3 mA)
- Relative energy resolution: $\sigma_{E}/E \sim 10\%/\sqrt{E \oplus 0.7\%}$
- Electronic calibration: < 0.25%
- Fast shaping to optimize signal/noise ratio
 - Up to 20 times more pile-up events
 - Optimal hardware shaping time scales as $L^{-1/4}$, $t_n(D) \sim$ 28ns @10³⁵
- Digital filtering signal reconstruction: To adapt to changing LHC luminosity
- Minimal coherent pickup noise: < 5% of incoherent noise
- Data to be used for both DAQ and L0/L1 trigger
- Same power consumption

	ASICs	COTS		LVDS
		(multiple lots)	(single-lot)	LVFS
TID (kGy)	5.8	78	19	4.5
NIEL (n/cm^2)	1.7×10^{14}	6.6×10^{14}	1.7×10^{14}	7.7×10^{13}
SEE (p/cm^2)	3.2×10^{13}	1.3×10^{14}	3.2×10^{13}	2×10^{13}

 $t_p(\Delta)$ [ns]

Brookhaven Science Associates

05/11/2010