QCD Correction to J/ψ Production at Different Energy Scales

Jian-Xiong Wang
Institute of High Energy, Chinese Academy of Science, Beijing

Charm 2010
The 4-th International Workshop on Charm Physics
Oct. 21-24, 2010, IHEP, Beijing, China
1 Introduction

2 J/psi production at the B factories
 - double charmonium production
 - Inclusive J/ψ production

3 the other
 - J/ψ production in Z decay
 - J/ψ production from Υ Decay

4 J/ψ production at the Tevatron and LHC
 - QCD Correction to color-singlet J/ψ production
 - QCD Correction to color-octet J/ψ production

5 J/ψ production at the HERA

6 Other New Progress

7 Summary
Introduction

- Perturbative and non-perturbative QCD, hadronization, factorization
- Color-singlet and Color-octet mechanism was proposed based on NRQCD since c-quark is heavy.
- Clear signal to detect J/ψ.
- Heavy quarkonium production is a good place to testify these theoretical framework.
- But there are still many difficulties.
 - J/ψ photoproduction at HERA
 - J/ψ production at the B factories
 - J/ψ polarization at the Tevatron
- NLO corrections are important.
 - Data on inelastic J/ψ photoproduction are adequately described by the color singlet channel alone at NLO
 - Double charmonium production at the B factories
QCD Correction to J/ψ Production at Different Energy Scales

- J/ψ production at the B factories
- double charmonium production

$$e^+ e^- \rightarrow J/\psi + \eta_c$$

<table>
<thead>
<tr>
<th>Experimental Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELLE: $\sigma[J/\psi + \eta_c] \times B^{\eta_c}[\geq 2] = (25.6 \pm 2.8 \pm 3.4) \text{ fb}$</td>
</tr>
<tr>
<td>BARAR: $\sigma[J/\psi + \eta_c] \times B^{\eta_c}[\geq 2] = (17.6 \pm 2.8^{+1.5}_{-2.1}) \text{ fb}$</td>
</tr>
<tr>
<td>[Abe et al.(2002), Pakhlov(2004), Aubert et al.(2005)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LO NRQCD Predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.3 \sim 5.5 \text{ fb}$</td>
</tr>
<tr>
<td>[Braaten and Lee(2003), Liu et al.(2003), Hagiwara et al.(2003)]</td>
</tr>
</tbody>
</table>
QCD Correction to J/ψ Production at Different Energy Scales

J/psi production at the B factories

double charmonium production

$e^+ e^- \rightarrow J/\psi + \eta_c$

<table>
<thead>
<tr>
<th>Experimental Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELLE: $\sigma[J/\psi + \eta_c] \times B^{\eta_c}[\geq 2] = (25.6 \pm 2.8 \pm 3.4)$ fb</td>
</tr>
<tr>
<td>BARAR: $\sigma[J/\psi + \eta_c] \times B^{\eta_c}[\geq 2] = (17.6 \pm 2.8^{+1.5}_{-2.1})$ fb</td>
</tr>
<tr>
<td>[Abe et al.(2002), Pakhlov(2004), Aubert et al.(2005)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LO NRQCD Predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.3 \sim 5.5$ fb</td>
</tr>
<tr>
<td>[Braaten and Lee(2003), Liu et al.(2003), Hagiwara et al.(2003)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NLO QCD corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K \equiv \sigma^{NLO}/\sigma^{LO} \sim 2$</td>
</tr>
<tr>
<td>Confirmed by the analytic result in PRD77, (2008), B. Gong and J. X. Wang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relativistic corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K \sim 2$</td>
</tr>
<tr>
<td>PRD67, (2007) E. Braaten and J. Lee</td>
</tr>
<tr>
<td>PRD75, (2007), Z. G. He, Y. Fan and K. T. Chao</td>
</tr>
<tr>
<td>PRD77,(2008),G.T. Bodwin, J. Lee and C. Yu</td>
</tr>
</tbody>
</table>
Problem

LO NRQCD prediction indicates that the cross section of this process is large than that of $J/\psi + \eta_c$ production by a factor of 1.8, but no evidence for this process was found at the B factories.

PRL90, (2003) G. T. Bodwin, E. Braaten and J. Lee
Problem

LO NRQCD prediction indicates that the cross section of this process is larger than that of $J/\psi + \eta_c$ production by a factor of 1.8, but no evidence for this process was found at the B factories.

PRL90, (2003) G. T. Bodwin, E. Braaten and J. Lee

NLO QCD corrections

- Greatly decreased, with a K factor ranging from $-0.31 \sim 0.25$ depending on the renormalization scale.
- Might explain the situation.

QCD Correction to J/ψ Production at Different Energy Scales

Inclusive J/ψ production

LO NRQCD Predictions:

\[
e^+ e^- \to J/\psi + c\bar{c} \quad 0.07 \sim 0.20 \text{pb} \\
e^+ e^- \to J/\psi + gg \quad 0.15 \sim 0.3 \text{pb} \\
e^+ e^- \to J/\psi^{(8)}(3\mathcal{P}_J, 1\mathcal{S}_0) + g \quad 0.3 \sim 0.8 \text{pb}
\]

Experimental Data:

- **BARAR**
 \[\sigma[e^+ e^- \to J/\psi + X] = (2.54 \pm 0.21 \pm 0.21) \text{ pb}\]

- **CLEO**
 \[\sigma[e^+ e^- \to J/\psi + X] = (1.9 \pm 0.20) \text{ pb}\]

- **BELLE**
 \[\sigma[e^+ e^- \to J/\psi + X] = (1.45 \pm 0.10 \pm 0.13) \text{ pb}\]
 \[\sigma[e^+ e^- \to J/\psi + c\bar{c} + X] = (0.87^{+0.21}_{-0.19} \pm 0.17) \text{ pb}\]

New BELLE Data

\[\sigma[e^+ e^- \to J/\psi + X] = (1.17 \pm 0.02 \pm 0.07) \text{ pb}\]
\[\sigma[e^+ e^- \to J/\psi + c\bar{c}] = (0.74 \pm 0.08^{+0.09}_{-0.08}) \text{ pb}\]
\[\sigma[e^+ e^- \to J/\psi + X_{\text{non}-c\bar{c}}] = (0.43 \pm 0.09 \pm 0.09) \text{ pb}\]

[Pakhlov et al.(2009)]
Cross section at NLO for $e^+e^- \rightarrow J/\psi + gg$

$$\sigma^{(1)} = \sigma^{(0)} \left\{ 1 + \frac{\alpha_s(\mu)}{\pi} \left[a(\hat{s}) + \beta_0 \ln \left(\frac{\mu}{2m_c} \right) \right] \right\}$$

<table>
<thead>
<tr>
<th>m_c (GeV)</th>
<th>$\alpha_s(\mu)$</th>
<th>$\sigma^{(0)}$ (pb)</th>
<th>$a(\hat{s})$</th>
<th>$\sigma^{(1)}$ (pb)</th>
<th>$\sigma^{(1)}/\sigma^{(0)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.267</td>
<td>0.341</td>
<td>2.35</td>
<td>0.409</td>
<td>1.20</td>
</tr>
<tr>
<td>1.5</td>
<td>0.259</td>
<td>0.308</td>
<td>2.57</td>
<td>0.373</td>
<td>1.21</td>
</tr>
<tr>
<td>1.6</td>
<td>0.252</td>
<td>0.279</td>
<td>2.89</td>
<td>0.344</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Consistent results from two group:
PRL102, (2009) Y. Q. Ma, Y. J. Zhang and K. T. Chao

Relativistic Correction enhance results about a factor 1.3 from two group:
PRD82, (2010). Y. Jia
QCD Correction to J/ψ Production at Different Energy Scales

- J/psi production at the B factories
- Inclusive J/ψ production

\[e^+ e^- \rightarrow J/\psi + c\bar{c} \]

\[\sigma^{(1)} = \sigma^{(0)} \left\{ 1 + \frac{\alpha_s(\mu)}{\pi} \left[a(\hat{s}) + \beta_0 \ln \left(\frac{\mu}{2m_c} \right) \right] \right\} \]

<table>
<thead>
<tr>
<th>m_c (GeV)</th>
<th>$\alpha_s(\mu)$</th>
<th>$\sigma^{(0)}$ (pb)</th>
<th>$a(\hat{s})$</th>
<th>$\sigma^{(1)}$ (pb)</th>
<th>$\sigma^{(1)}/\sigma^{(0)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.267</td>
<td>0.224</td>
<td>8.19</td>
<td>0.380</td>
<td>1.70</td>
</tr>
<tr>
<td>1.5</td>
<td>0.259</td>
<td>0.171</td>
<td>8.94</td>
<td>0.298</td>
<td>1.74</td>
</tr>
<tr>
<td>1.6</td>
<td>0.252</td>
<td>0.129</td>
<td>9.74</td>
<td>0.230</td>
<td>1.78</td>
</tr>
</tbody>
</table>

Cross sections with different charm quark mass m_c with the renormalization scale $\mu = 2m_c$ and $\sqrt{s} = 10.6$ GeV.

More about the scale and comparison with data

Use Brodsky, Lepage and Mackenzie (BLM) scale setting [Brodsky et al. (1983)]

\[
\sigma^{(1)} = \sigma^{(0)}(\mu^*)[1 + \frac{\alpha_s(\mu^*)}{\pi} b(\hat{s})].
\]

<table>
<thead>
<tr>
<th>(m_c) (GeV)</th>
<th>(\alpha_s(\mu^*))</th>
<th>(\sigma^{(0)}) (pb)</th>
<th>(b(\hat{s}))</th>
<th>(\sigma^{(1)}) (pb)</th>
<th>(\sigma^{(1)}/\sigma^{(0)})</th>
<th>(\mu^*) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.348</td>
<td>0.381</td>
<td>3.77</td>
<td>0.540</td>
<td>1.42</td>
<td>1.65</td>
</tr>
<tr>
<td>1.5</td>
<td>0.339</td>
<td>0.293</td>
<td>4.31</td>
<td>0.429</td>
<td>1.47</td>
<td>1.72</td>
</tr>
<tr>
<td>1.6</td>
<td>0.332</td>
<td>0.222</td>
<td>4.90</td>
<td>0.337</td>
<td>1.52</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Cross sections with different charm quark mass \(m_c\). The renormalization scale \(\mu = \mu^* \sim m_c\).
Momentum distribution of inclusive J/ψ production with $\mu = \mu^*$ and $m_c = 1.4$ GeV is taken for the $J/\psi cc$ channel. The contribution from the feed-down of ψ' has been added to all curves by multiplying a factor of 1.29.
QCD Correction to J/ψ Production at Different Energy Scales

J/ψ production at the B factories

Inclusive J/ψ production

Momentum and angular distributions of inclusive J/ψ production.

The contribution from the feed-down of ψ' has been added to all curves by multiplying a factor of 1.29.
QCD Correction to J/ψ Production at Different Energy Scales

J/ψ production at the B factories

Inclusive J/ψ production

Polarization parameter α and angular distribution parameter A of J/ψ as functions of p.
Constraint for color-octect matrix element of $c\bar{c}(^{1}S_{0}^{8}, 3P_{j}^{8})$

$$\sigma[e^+ e^- \rightarrow J/\psi + X_{\text{non}-c\bar{c}}] = (0.43 \pm 0.09 \pm 0.09) \text{ pb}$$

$$\sigma[e^+ e^- \rightarrow J/\psi + X_{\text{non}-c\bar{c}}]^{\text{color-onlyTh}} > (0.43) \text{ pb}$$

$$\sigma[e^+ e^- \rightarrow J/\psi + X_{\text{non}-c\bar{c}}]^{\text{color-octetTh}} > (0.6) \text{ pb}$$

From the contribution of $e^+ e^- \rightarrow J/\psi(^{1}S_{0}^{8}, 3P_{j}^{8}) + g$ at NLO

QCD Correction to J/ψ Production at Different Energy Scales

Experimental and Leading-order Theoretical Results. [Acciarri:1998]

$$Br(Z \to J/\psi_{\text{prompt}} + X) = (2.1^{+1.4}_{-1.2}) \times 10^{-4}$$

Dominant process: $Z \to J/\psi + c\bar{c} + X$, and the total decay width is presented as

$$\Gamma^{NLO}(\mu) = \Gamma^{LO}(\mu)[1 + \frac{\alpha_s(\mu)}{\pi}(A + \beta_0 \ln \frac{\mu}{2m_Q} + Bn_f)].$$

(1)

$$Br^{\text{total}} = (7.3 \sim 10) \times 10^{-5}$$

The situation for J/ψ production in Υ decay

LO NRQCD Predictions:

\[Br(\Upsilon \to J/\psi(3S_1^8) + gg) = 6.2 \times 10^{-4} \] , M. Napsuciale, Phys. Rev. D 57, 5711 (1998)

\[Br(\Upsilon \to J/\psi + c\bar{c}g) = 5.9 \times 10^{-4} \] , S. Y. Li, Q. B. Xie and Q. Wang, Phys. Lett. B 482, 65 (2000)

\[Br(\Upsilon \to J/\psi + gg) = \text{order at} \times 10^{-4} \] , ????

Experimental Data for $Br(\Upsilon \to J/\psi + X)$:

CLEO $(11 \pm 4 \pm 2) \times 10^{-4}$ Phys. Lett. B 224, 445

CLEO $(6.4 \pm 0.4 \pm 0.6) \times 10^{-4}$ Phys. Rev. D70, 072001(2004)

The situation is quite strange ????

The correct leading order prediction is

\[B_{Direct}(\Upsilon \to J/\psi + c\bar{c}g) = 3.9 \times 10^{-5}. \]
\[Z. \ G. \ He \ and \ J. \ X. \ Wang, \ Phys.Rev.D81:054030,2010. \]

Part of NLO prediction from $\Upsilon \to J/\psi + gg$ is

\[B_{Direct}(\Upsilon \to J/\psi + gg) = 3.1 \times 10^{-5}. \]
\[Z. \ G. \ He \ and \ J. \ X. \ Wang, \ arXiv:1009.1563[hep-ph]]. \]

The full QCD correction for the inclusive J/ψ production in Υ decay would be a very interesting and challenge work for explaining the experimental data.
QCD Correction to color-singlet J/ψ production

P_t distribution of J/ψ production at QCD NLO was calculated in PRL98,252002 (2007), J. Campbell, F. Maltoni F. Tramontano

Some technique problems must be solved to calculate J/ψ polarization

P_t distribution of J/ψ polarization at QCD NLO was calculated in PRL100,232001 (2008), B. Gong and J. X. Wang
QCD Correction to color-singlet Υ production

Υ polarization drastically changes from transverse polarization dominant at LO into longitudinal polarization dominant at NLO

P_t distribution of Υ polarization at QCD NLO was calculated with detail in PRD78 074011 (2008), B. Gong and J. X. Wang

Partly NNLO calculation for Υ production calculated by PRL101, 152001(2008), P. Artoisenet, John M. Campbell, J.P. Lansberg, F. Maltoni, F. Tramontano
NLO QCD corrections to J/ψ production via S-wave color octet states

3 tree processes at LO

\begin{align*}
g(p_1) + g(p_2) & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right](p_3) + g(p_4), \\
g(p_1) + q(p_2) & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right](p_3) + q(p_4), \\
q(p_1) + \overline{q}(p_2) & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right](p_3) + g(p_4).
\end{align*}

At NLO

\begin{align*}
gg & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right]gg, \\
gg & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right]q\overline{q}, \\
gq & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right]gq, \\
q\overline{q} & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right]gg, \\
q\overline{q} & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right]q'q', \\
qq & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right]qq, \\
qq' & \rightarrow J/\psi\left[1S_0^{(8)}, 3S_1^{(8)}\right]qq'.
\end{align*}
QCD Correction to J/ψ Production at Different Energy Scales

- J/ψ production at the Tevatron and LHC
- QCD Correction to color-octet J/ψ production

QCD Correction to color-octet $J/\psi(1S_0, 3S_1)$ production

To fit the Tevatron p_t distribution give more $\langle \mathcal{O}_8^{\psi}(1S_0) \rangle = 0.075$ GeV3 and less $\langle \mathcal{O}_8^{\psi}(3S_1) \rangle = 0.0021$ GeV3 than they are at LO fitting. The experimental data with $p_t < 6$ GeV have to abandon.

Correction to color-octet $J/\psi(1S_0, 3S_1, 3P_1^f)$ production was done recently and gave almost the same prediction for p_t distribution as before without calculation of polarization, by

arXiv:1009.3655, Yan-Qing Ma, Kai Wang, Kuang-Ta Chao
arXiv:1009.5662, Mathias Butenschoen, Bernd A. Kniehl
QCD Correction to J/ψ Production at Different Energy Scales

J/ψ production at the Tevatron and LHC

QCD Correction to color-octet J/ψ production

QCD Correction to color-octet $\Upsilon(1S^8_0, 3S^8_1)$ production

QCD Correction to J/ψ production at HERA.

P_t distribution of production and different scheme of polarization for J/ψ (color-singlet) at QCD NLO was calculated in
PRL102, 142001 (2009), P. Artoisenet, John M. Campbell, F. Maltoni, F. Tramontano,

P_t distribution of production J/ψ (color-octet) at QCD NLO was calculated in

It include p-wave state and some progress in technique must be archived.
Other New Progress

χ_{cJ} production at hadron colliders with QCD radiative corrections
It include p-wave state and some progress in technique must be archived.

A new factorization scheme for J/ψ hadron production proposed by
J. W. Qiu, et al, Qiu’s talk

Fragmentation function of $c \rightarrow J/\psi$ at QCD NLO was calculated by
B. Gong and J. X. Wang, in prepare
Summary

- For B-factories: NRQCD at NLO of α_s and ν can well describe J/ψ production data. Strong constraint to the values of color-octect matrix element of $c\bar{c}(^1S^0_0,^3P^8_J)$ to almost zero. The dominant part $c\bar{c}(^3S^8_1)$ for hadron production is still there.

- For J/ψ production in Υ decay, the LO prediction is one order in magnitude smaller than experimental measurement.

- The NLO results for J/ψ production in z^0 decay is just half of experimental measurement.

- $c \to J/\psi$ fragmentation function is obtained at NLO level for the first time.

- The polarization problem for J/ψ hadroproduction is still there even at QCD NLO.

- New Progress,
Thank you!

P. Pakhlov (Belle) (2004), hep-ex/0412041.

Y.-Q. Ma, Y.-J. Zhang, and K.-T. Chao, Phys. Rev. Lett. 102, 162002 (2009), 0812.5106.

