Scattering Amplitudes turn our theories into predictions:

- The Evaluation of Scattering Amplitudes is necessary to test our theoretical models and compare their prediction with the experiments.
- There is a long tradition and extensive literature.
- The understanding of the structure of Scattering Amplitudes goes in parallel with the development of tools for computations.
Introduction

Scattering Amplitudes turn our theories into predictions:

- The Evaluation of **Scattering Amplitudes** is necessary to test our theoretical models and **compare their prediction with the experiments**
- There is a **long tradition** and **extensive literature**
- The **understanding of the structure** of Scattering Amplitudes goes in parallel with the **development of tools** for computations

Outline of this talk:

- Motivation for higher order calculations
- An overview of techniques employed for virtual one-loop amplitudes
- Can we extend what we learned at one-loop to study a more general problem?

For more details → several talks in **Track 3**
The “Big Picture”
Partons and Protons

PDF's: Parton Distribution Functions

Hard Scattering process (high energy)

\[\sigma_{AB} = \int dx_a dx_b \, f_{a/A}(x_a, Q^2) f_{b/B}(x_b, Q^2) \, \hat{\sigma}_{ab\to X} \]
Perturbative expansion

Theoretical predictions should match the needs of the experiments.

For many analyses, Leading-Order (LO) predictions are not sufficient → we need higher orders in the perturbative expansion.
Why Higher Orders?

- Reduce the **Theoretical Error**
 - Parametric Error (input parameters: PDF, masses, couplings...)
 - Truncation Error (missing Higher Orders)
 - Estimated by looking at the Scale-Dependence

Higgs + jet at NNLO
Boughezal at al. (2013)

Top-pair production at NNLO
Czakon, Fiedler, Mitov (2013)
Why Higher Orders?

- Reduce the **Theoretical Error**
 - Parametric Error (input parameters: PDF, masses, couplings...)
 - Truncation Error (missing Higher Orders)
 - Estimated by looking at the Scale-Dependence

- Effects of Higher Order Corrections (NLO, NNLO, etc)
 - Large effects in the cross-section (in particular in QCD)
 - Changes in the shape of distributions
 - Loop-induced effects

- At the LHC:
 - Distinguish the Signal from Backgrounds
 - Provide the “theory answers” to anomalies/new physics signals
From LO to NLO

\[\sigma_{\text{NLO}} = \int_n \left(d\sigma^B + d\sigma^V + \int_1 d\sigma^A \right) + \int_{n+1} \left(d\sigma^R - d\sigma^A \right) \]

Virtual Part and Real Emission contributions are IR divergent

Subtraction terms

Needed to cancel infrared singularities numerically. Idea: Add zero in suitable way to cancel infrared singularities from real and virtual parts.

Several Automated Implementations for Tree-Level and Subtraction Terms
Automated tools for Real & Subtraction

- Born & Real radiation: tree level matrix element
- Many tools available on the market, too many to mention all of them:
 - GRACE
 - SHERPA
 - HELAS/MADGRAPH/MADEVENT
 - HELAC/PHEGAS
 - WHIZARD
 - CompHep

- Subtractions: automated in several programs:
 - MadDipole [Frederix, Greiner, Gehrmann]
 - AutoDipole (SuperAutoDipole) [Hasegawa, Moch, Uwer]
 - Dipoles in SHERPA [Gleisberg, Krauss]
 - HELAC-DIPOLES [Czakon, Papadopoulos, Worek]

In the following: we focus on the computation of the Virtual Part of NLO calculations
Any m-point one-loop amplitude can be written, before integration, as

$$A(\bar{q}) = \frac{N(\bar{q})}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

where

$$\bar{D}_i = (\bar{q} + p_i)^2 - m_i^2, \quad \bar{q}^2 = q^2 - \mu^2, \quad \bar{D}_i = D_i - \mu^2$$

Our task is to calculate, for each phase space point:

$$\mathcal{M} = \int d^n\bar{q} \ A(\bar{q}) = \int d^n\bar{q} \frac{N(\bar{q})}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$
The traditional one-loop "master" formula

\[\int d^n \bar{q} \frac{N(\bar{q})}{D_{i_0} D_{i_1} \ldots D_{i_{m-1}}} = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) \int d^n \bar{q} \frac{1}{D_{i_0} D_{i_1} D_{i_2} D_{i_3}} \]

\[+ \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) \int d^n \bar{q} \frac{1}{D_{i_0} D_{i_1} D_{i_2}} \]

\[+ \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) \int d^n \bar{q} \frac{1}{D_{i_0} D_{i_1}} \]

\[+ \sum_{i_0}^{m-1} a(i_0) \int d^n \bar{q} \frac{1}{D_{i_0}} \]

+ rational terms
One-Loop as a 3 step process

\[\int d^n \bar{q} \frac{N(\bar{q})}{\bar{D}_i_0 \bar{D}_i_1 \ldots \bar{D}_{m-1}} = \sum_i d_i \text{ Box}_i + \sum_i c_i \text{ Triangle}_i + \sum_i b_i \text{ Bubble}_i + \sum_i a_i \text{ Tadpole}_i + R , \]

1) **Generation**: Compute the *unintegrated amplitudes* for all diagrams
2) **Reduction**: Extract all *coefficients and rational terms*
3) **Master Integrals**: Calculate the *Master Integrals* (scalar integrals) and combine with the coefficients
One-Loop as a 3 step process

\[
\int d^n \bar{q} \frac{N(\bar{q})}{\bar{D}_{i_0} \bar{D}_{i_1} \ldots \bar{D}_{m-1}} = \sum_i d_i \ \text{Box}_i + \sum_i c_i \ \text{Triangle}_i \\
+ \sum_i b_i \ \text{Bubble}_i + \sum_i a_i \ \text{Tadpole}_i + R,
\]

1) **Generation**: Compute the **unintegrated amplitudes** for all diagrams
2) **Reduction**: Extract all **coefficients and rational terms**
3) **Master Integrals**: Calculate the **Master Integrals** (scalar integrals) and combine with the coefficients

There are several techniques available for **Generation + Reduction** and available codes to compute the one-loop **Scalar Integrals**

One-Loop Master Integrals: **Ellis, Zanderighi; van Oldenborgh; van Hameren; Binoth et al.; Hahn et al.**
Tensorial Reduction

- The numerator function of any amplitude is a **polynomial** in the integration momentum q

\[
N(\bar{q}) = \sum_{\tau=0}^{R} C_{\mu_1...\mu_r} q^{\mu_1}...q^{\mu_r}.
\]

- Each amplitude can be decomposed in a linear combination of **kinematic factors**, which are **q-independent**, multiplied by **tensors of various ranks in q** sitting on sets of Denominators

- Tensor integrals can be written in terms of scalar integrals (or not!)
- **PROS:** control over spurious singularities (Gram); fully **algebraic**.
- Needs **efficient computer algebra** and smart book-keeping/caching

Denner, Dittmaier; Binoth et al.; Hahn et al.; Fleisher, Riemann, Yundin.
On-Shell Methods / Unitarity Cuts

Cutting a loop propagator (roughly) means
\[\frac{1}{D_i} \rightarrow \delta(D_i) \]
I.e. putting it on-shell

In the Loop-Integral = Generalized Unitarity Methods
In the Integrand = OPP integrand-level reduction
Generalized Unitarity

- Generate **loop momenta configurations that satisfy the cut conditions** (complex momenta)
- For each configuration, **compute and multiply the trees** at the corner of the cut diagram
- Combine the results appropriately to **get all the coefficients** of the scalar integrals

![Diagram]

- More subtleties for the triple cut (leakage from higher point functions)
- Effectively **reduces a loop computation to tree computation** ("fusing tree amplitudes into loop amplitudes")

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng; Ellis, Giele, Kunszt, Melnikov
Rational Term R

Cut-Constructible part vs Rational Term

R is “automatic” in the tensorial reduction (algebra in dimension d)

On-shell methods offer different options for calculation of R

- Higher integer dimensions Giele, Kunszt, Melnikov
- Loop-level on shell recursions Berger, Bern, Dixon, Forde and Kosower
- Mass continuation method Badger
- Tree-level like Feynman Rules G.O., Papadopoulos, Pittau; Draggiotis, Garzelli, Malamos, Pittau; Shao, Zhang, Chao
Integral-level vs Integrand-level

Description in terms of Master Integrals \(l_i \rightarrow \) Integral Level

\[
\int d^n \bar{q} \, A(\bar{q}) = \int d^n \bar{q} \frac{N(\bar{q})}{\bar{D}_0 \bar{D}_1 \ldots \bar{D}_{m-1}} = c_0 l_0 + c_1 l_1 + \ldots + C_n l_n
\]
Integral-level vs Integrand-level

Description in terms of Master Integrals \(I_i \rightarrow \) Integral Level

\[
\int d^n\bar{q} \ A(\bar{q}) = \int d^n\bar{q} \frac{N(\bar{q})}{\bar{D}_0 \bar{D}_1 \ldots \bar{D}_{m-1}} = c_0 I_0 + c_1 I_1 + \ldots + C_n I_n
\]

Integrand Level \(\rightarrow \) The \(N = N \) identity

\[
N(\bar{q}) = ???
\]

Challenge: write a complete expression at the l.h.s. for \(N(\bar{q}) \)

- powers of \(q \) and \(\mu^2 \)
- scalar products
- reconstructed denominators \(\bar{D}_i \)
Integrand-Level Approach

Integrand level decomposition:

\[
N(\bar{q}) = \sum_{i<<m}^{n-1} \Delta_{ijk\ell m}(\bar{q}) \prod_{h\neq i,j,k,\ell,m} \bar{D}_h + \sum_{i<<\ell}^{n-1} \Delta_{ijk\ell}(\bar{q}) \prod_{h\neq i,j,k,\ell} \bar{D}_h +
\]

\[
+ \sum_{i<<k}^{n-1} \Delta_{ijk}(\bar{q}) \prod_{h\neq i,j,k} \bar{D}_h + \sum_{i<j}^{n-1} \Delta_{ij}(\bar{q}) \prod_{h\neq i,j} \bar{D}_h + \sum_{i}^{n-1} \Delta_{i}(\bar{q}) \prod_{h\neq i} \bar{D}_h
\]
Integrand-Level Approach

Integrand level decomposition:

\[N(\bar{\eta}) = \sum_{i << m}^{n-1} \Delta_{ijk\ell m}(\bar{\eta}) \prod_{h \neq i, j, k, \ell, m} \bar{D}_h + \sum_{i << \ell}^{n-1} \Delta_{ijk\ell}(\bar{\eta}) \prod_{h \neq i, j, k, \ell} \bar{D}_h + \]

\[+ \sum_{i << k}^{n-1} \Delta_{ijk}(\bar{\eta}) \prod_{h \neq i, j, k} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_{ij}(\bar{\eta}) \prod_{h \neq i, j} \bar{D}_h + \sum_{i}^{n-1} \Delta_{i}(\bar{\eta}) \prod_{h \neq i} \bar{D}_h \]

Recombining with the denominators:

\[A(\bar{\eta}) = \sum_{i << m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{\eta})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} + \sum_{i << \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{\eta})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell} + \sum_{i << k}^{n-1} \frac{\Delta_{ijk}(\bar{\eta})}{\bar{D}_i \bar{D}_j \bar{D}_k} + \]

\[+ \sum_{i < j}^{n-1} \frac{\Delta_{ij}(\bar{\eta})}{\bar{D}_i \bar{D}_j} + \sum_{i}^{n-1} \frac{\Delta_{i}(\bar{\eta})}{\bar{D}_i} , \]

the decomposition exposes the multi-pole nature of the integrand.
Integrand-Level Approach

Integrand level decomposition:

\[
N(\bar{q}) = \sum_{i << m}^{n-1} \Delta_{ijk\ell m}(\bar{q}) \prod_{h \neq i, j, k, \ell, m} \bar{D}_h + \sum_{i << \ell}^{n-1} \Delta_{ijk\ell}(\bar{q}) \prod_{h \neq i, j, k, \ell} \bar{D}_h + \\
+ \sum_{i << k}^{n-1} \Delta_{ijk}(\bar{q}) \prod_{h \neq i, j, k} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_{ij}(\bar{q}) \prod_{h \neq i, j} \bar{D}_h + \sum_{i}^{n-1} \Delta_i(\bar{q}) \prod_{h \neq i} \bar{D}_h
\]

- the functional form is **process-independent**, the process-dependent coefficients are contained in the Δ’s
- the **Rational Term** is automatically included
- polynomial fitting replaces the integration (both sides are polynomial)
- we can extract the coefficients going on-shell: we only need the Numerator Function evaluated on the cuts

GO, Papadopoulos, Pittau; Mastrolia, GO, Reiter, Tramontano
Example: 4-particles process (in 4-dim)

\[N(q) = d + \tilde{d}(q) + \sum_{i=0}^{3} [c(i) + \tilde{c}(q; i)] D_i + \sum_{i_0 < i_1}^{3} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] D_{i_0} D_{i_1} \]

\[+ \sum_{i_0=0}^{3} [a(i_0) + \tilde{a}(q; i_0)] D_{i \neq i_0} D_{j \neq i_0} D_{k \neq i_0} \]

We look for a \(q \) such that

\[D_0 = D_1 = D_2 = D_3 = 0 \]

\(\rightarrow \) there are two solutions \(q_0^\pm \)
Example: 4-particles process (in 4-dim)

\[N(q) = d + \tilde{d}(q) \]

Our “master formula” for \(q = q_0^\pm \) is:

\[N(q_0^\pm) = [d + \tilde{d}(w \cdot q_0^\pm)] \]

→ solve to extract the coefficients \(d \) and \(\tilde{d} \)
Example: 4-particles process (in 4-dim)

\[N(q) - d - \tilde{d}(q) = \sum_{i=0}^{3} \left[c(i) + \tilde{c}(q; i) \right] D_i + \sum_{i_0 < i_1}^{3} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] D_{i_0} D_{i_1} \]

\[+ \sum_{i_0 = 0}^{3} \left[a(i_0) + \tilde{a}(q; i_0) \right] D_{i \neq i_0} D_{j \neq i_0} D_{k \neq i_0} \]

Then we can move to the extraction of \(c \) coefficients using

\[N'(q) = N(q) - d - \tilde{d}(w \cdot q) \]

and setting to zero three denominators (ex: \(D_1 = 0, \ D_2 = 0, \ D_3 = 0 \))
Example: 4-particles process (in 4-dim)

\[N(q) - d - \tilde{d}(q) = [c(0) + \tilde{c}(q; 0)] D_0 \]

We have infinite values of \(q \) for which

\[D_1 = D_2 = D_3 = 0 \quad \text{and} \quad D_0 \neq 0 \]

\[\rightarrow \text{Here we need 7 of them to determine } c(0) \text{ and } \tilde{c}(q; 0) \]
Integrand-Reduction via Laurent Expansion

- The coefficients of the integrand can be extracted by performing a Laurent expansion with respect to one of the free parameters which appear in the solutions of the cut.
- Corrections at the coefficient level replace the subtractions at the integrand level.

Advantages:
- A "lighter" reduction algorithm where fewer coefficients.
- 4-cut decoupled from triple-, double-, and single-cut.
- No more “sampling on the cuts”

This method has been implemented in the C++ library Ninja and interfaced with GoSam: Preliminary tests show an improvement in the computational performance.

Mastrolia, Mirabella, Peraro
see also Forde; Badger
Different Multi-Purpose Codes/Tools

Several Strategies = Many Computational Tools:

★ BlackHat [Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre, Ozeren]
★ Feynarts/Formcalc/LoopTools [Hahn et al.]
★ GoSam [Cullen, Greiner, Heinrich, Mastrolia, GO, Reiter, Tramontano, Luisoni]
★ Helac-NLO [Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worek]
★ MadLoop [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau]
★ NJet [Badger, Biedermann, Uwer, Yundin]
★ Openloops [Cascioli, Maierhöfer, Pozzorini]
★ Recola [Actis, Denner, Hofer, Scharf, Uccirati]
★ Rocket [Ellis, Giele, Kunszt, Melnikov, Zanderighi]

The “NLO industrial revolution” = NLO Automation
Different Multi-Purpose Codes/Tools

Several Strategies = Many Computational Tools:

- **BlackHat** → **Generalized Unitarity**
- **Feynarts/Formcalc/LoopTools** → **Feynman Diagrams + Tens.Red./Integrand-Level**
- **GoSam** → **Feynman Diagrams + Tens.Red./Integrand-Level**
- **Helac-NLO** → **Tree-level recursion + Integrand-Level**
- **MadLoop** → **Tree-level recursion + Integrand-Level**
- **NJet** → **Generalized Unitarity**
- **Openloops** → **Recursive Tensorial Reconstruction + Tens.Red./Integrand-Level**
- **Recola** → **Recursive Tensorial Reconstruction + Tens.Red./Integrand-Level**
- **Rocket** → **Generalized Unitarity**

The “NLO industrial revolution” = NLO Automation
Modularity, Automation, BLHA

Automation is crucial for multi-lop NLO calculations:

- Optimization/Self-organization
- Avoid human mistakes
- Process-independent techniques

Different Levels of Automation: MC controls the OLP via BLHA
WHAT ABOUT HIGHER LOOPS?

Problem: at two loops (and higher), we do not have a **Standard Complete Basis of Master Integrals**

recent work of Gluza, Kosower, Kajda; Schabinger

The most common (and successful) approach relies on:

- Amplitude generation via **Feynman diagrams**
- Reduction to a minimal set of MIs using **IBPs** (Laporta algorithm)
- Direct Computation of the MIs (analytically or numerically)
Problem: at two loops (and higher), we do not have a Standard Complete Basis of Master Integrals

Can we extend what we learned at one-loop about to develop alternative approaches for multi-loop reduction?

- **Integrand-level Techniques**
 Mastrolia, GO (2011); Badger, Frellersvig, Zhang; Kleiss, Malamos, Papadopoulos, Verheyen; Zhang; Mastrolia, GO, Mirabella, Peraro; Feng, Huang; Huang, Zhang

- **Maximal Unitarity**
 Kosower, Larsen (2011); Johansson, Kosower, Larsen; Larsen, Caron-Huot
Integrand-Level Strategy

Let’s consider a two-loop integral with \(n \) denominators:

\[
\int dq \ dk \ \frac{N(q, k)}{\bar{D}_1 \bar{D}_2 \ldots \bar{D}_n}
\]

As in the one-loop case, we want to construct an identity for the integrands:

\[
N(q, k) = \sum_{i_1 << i_8}^{n} \Delta_{i_1,\ldots,i_8}(q, k) \prod_{h \neq i_1,\ldots,i_8} \bar{D}_h + \ldots + \sum_{i_1 << i_2}^{n} \Delta_{i_1,i_2}(q, k) \prod_{h \neq i_1,i_2} \bar{D}_h
\]

\[
A(q, k) = \sum_{i_1 << i_8}^{n} \frac{\Delta_{i_1,\ldots,i_8}(q, k)}{\bar{D}_{i_1} \bar{D}_{i_2} \ldots \bar{D}_{i_8}} + \sum_{i_1 << i_7}^{n} \frac{\Delta_{i_1,\ldots,i_7}(q, k)}{\bar{D}_{i_1} \bar{D}_{i_2} \ldots \bar{D}_{i_7}} + \ldots + \sum_{i_1 << i_2}^{n} \frac{\Delta_{i_1,i_2}(q, k)}{\bar{D}_{i_1} \bar{D}_{i_2}}
\]

- Which terms appear in the above expressions?
- What is the general form of the residues \(\Delta_{i_1,\ldots,i_m} \)?

Collaboration with P.Mastrolia, E.Mirabella, T.Peraro, U.Schubert
Let’s look at the on-shell conditions, and impose

\[D_1 = D_2 = \ldots = D_n = 0 \]

1) There are no solutions \(\rightarrow \) reducible

\[\rightarrow \text{ The } n\text{-denominator integrand can be written in terms of integrands with } (n-1) \text{ denominators} \]

\[\rightarrow \text{ it is fully reducible in terms of lower point functions} \]

i.e. a six-point function at one-loop
Let’s look at the on-shell conditions, and impose

\[D_1 = D_2 = \ldots = D_n = 0 \]

1) There are no solutions \(\rightarrow\) **reducible**

2) The cut has solutions \(\rightarrow\) there is a **residue** \(\Delta\)

We divide the numerator modulo the Gröbner basis of the \(n\)-ple cut (a set of polynomials vanishing on the same on-shell cuts of the denominators).

\(\rightarrow\) The **remainder** of the division is the **residue** of the \(n\)-ple cut.

\(\rightarrow\) The **quotients** generate integrands with \((n - 1)\) denominators.
Let’s look at the on-shell conditions, and impose

\[D_1 = D_2 = \ldots = D_n = 0 \]

1) There are no solutions → **reducible**

2) The cut has solutions → there is a **residue** \(\Delta \)

3) Finite number of solutions \(n_s \) → **Maximum Cut**

→ “Maximum Cut” i.e. a four-point function at one-loop (in 4-dim)
→ its residue is a univariate polynomial parametrized by \(n_s \) coefficients
→ the corresponding residue can always be reconstructed at the cut
→ the residue is determined as in the previous case
"On-shell" in Algebraic Geometry Language

\[\mathcal{I}_{i_1 \ldots i_n} = \frac{\mathcal{N}_{i_1 \ldots i_n}(z)}{D_{i_1}(z) \cdots D_{i_n}(z)} \]

where \(z = \) components of the loop momenta

- Ideal: \(\mathcal{J}_{i_1 \ldots i_n} = \langle D_{i_1}, \ldots, D_{i_n} \rangle \)
- Gröbner basis \(\mathcal{G}_{i_1 \ldots i_n} \): same zero as the denominators
- Multivariate division of \(\mathcal{N}_{i_1 \ldots i_n} \) modulo \(\mathcal{G}_{i_1 \ldots i_n} \)

\[\mathcal{N}_{i_1 \ldots i_n}(z) = \Gamma_{i_1 \ldots i_n} + \Delta_{i_1 \ldots i_n}(z) \]

The quotient \(\Gamma_{i_1 \ldots i_n} \) can be expressed in terms of denominators

\[\Gamma_{i_1 \ldots i_n} = \sum_{\kappa=1}^{n} \mathcal{N}_{i_1 \ldots i_{\kappa-1} i_{\kappa+1} \ldots i_n}(\zeta) \bar{D}_{i_\kappa}(\zeta) \]

Which provides the Recursive Formula

\[\mathcal{I}_{i_1 \ldots i_n} = \sum_{\kappa=1}^{n} \mathcal{I}_{i_1 \ldots i_{\kappa-1} i_{\kappa+1} i_n} + \frac{\Delta_{i_1 \ldots i_n}}{\bar{D}_{i_1} \cdots \bar{D}_{i_n}} \]
Two-loop Photon Self-Energy in QED

\[\sim \text{higher powers of propagators are not problematic} \]

\[
T = \frac{\Delta_{1234}}{D_1^2 D_2 D_3 D_4} + \frac{\Delta_{1234}}{D_1 D_2 D_3 D_4} + \frac{\Delta_{1234}}{D_1^2 D_2 D_4} + \frac{\Delta_{234}}{D_2 D_3 D_4} + \frac{\Delta_{124}}{D_1 D_2 D_4}
\]

\[N = 16[\mu_{11}^2 - k_1^2 (k_1 \cdot p)] + \cdots \]

\[d \text{ dimensions: } \bar{k}_i^\mu = k_i^\mu + \bar{\mu}_i \quad \mu_{ij} = \bar{\mu}_i \cdot \bar{\mu}_j \]

\[\text{Reduction completed after five steps} \ldots \]

\[T = \frac{8\mu_{11}(2\mu_{11} - p^2)}{D_1^2 D_2 D_3 D_4} - \frac{8(\mu_{11} + p^2)}{D_1 D_2 D_3 D_4} + \frac{8\mu_{11}}{D_1^2 D_2 D_4} - \frac{8}{D_3 D_3 D_4} + \frac{8}{D_1 D_2 D_4} \]

\[\cdots \text{performed for the full } N \cdots \]

\[\cdots \text{and for the other diagrams} \]
Mini-collection of “Conclusions” form the past 5 years:
“Can we achieve at NLO the same degree of automation of the LO?”
“This method is potentially a good candidate for NLO automation”
“A generic NLO calculator seems feasible”
Conclusions/Outlook

At present, there is a great variety of methods available for NLO scattering amplitudes: Old ideas merged with New Ideas

- Tensorial Reduction
- Generalized Unitarity
- Integrand-level reduction
- Techniques for the Rational Terms
- Trees “recycled” into loops

- Automation of Feynman Diagrams
- On-shell tree-amplitudes
- Off-shell currents
- Recursion Relations
- Tensorial Reconstruction
Conclusions/Outlook

At present, there is a great variety of methods available for NLO scattering amplitudes: Old ideas merged with New Ideas

- Tensorial Reduction
- Generalized Unitarity
- Integrand-level reduction
- Techniques for the Rational Terms
- Trees “recycled” into loops
- Automation of Feynman Diagrams
- On-shell tree-amplitudes
- Off-shell currents
- Recursion Relations
- Tensorial Reconstruction

- OLP integrated inside the MC (or via BLHA) to generate theoretical prediction for a large variety of processes: high multiplicities, several scales, effective vertices . . .
At present, there is a great variety of methods available for NLO scattering amplitudes: Old ideas merged with New Ideas

Tensorial Reduction
Generalized Unitarity
Integrand-level reduction
Techniques for the Rational Terms
Trees “recycled” into loops

OLP integrated inside the MC (or via BLHA) to generate theoretical prediction for a large variety of processes: high multiplicities, several scales, effective vertices . . .

Ideas + Automation = NLO Revolution

“Will we achieve at NNLO the same degree of automation of the NLO?”
(not a serious question, but...)