Development of SOI Electronics

Zhao Kai Liu Zhongli

ASIC & System Department, IMECAS

Feb. 1st, 2013
zhaokai@ime.ac.cn
Outline

1. SOI Technology in Microelectronics
2. SOI in System Integrated Chip
3. SOI in Harsh-Environment Application
4. Relative Works of our Research Group
5. Summary
SOI Technology in Microelectronics

Bulk Planar

Extremely Thin SOI

Ultra Thin Body & Box

CMOS: SOI vs. Bulk

High-Speed (Low Capacitor), Low-Power (Low Leakage), No Latch-up, Better SER etc.
Advantages of FDSOI CMOS technology:

- No Kink effects, No body-contact area;
- More speed, Less RC, Lower Power;
- Easy design transfer from Bulk;
- First choice for Sub-10nm node.
SOI in System Integrated Chip

- High Performance CMOS Circuits
- Excellent Analog/RF Circuits
- Complex MEMS/Sensor/Actuator
- Dedicated Optical-devices
- SOI, to fabricate complex SOC.

Flow sensor

SOI Pixel Detector

Spring

Bolometer

SOI thickness (µm)

[O. Lacoste et al., *IEEE Sensors* 2004]

[M. El Ghorba et al., *Transducers* 2007]

[S. Sobieski et al., *Sensors Letters*, 2009]
SOI in Harsh-Environment Application

- Less susceptibility to soft errors
 - SER reduced by 5~7X
 - Low power high reliability
 - No single-event latch-up
 - FDSOI has better SER than PDSOI

High-Temp: Guaranteed Operation To 225°C For Five Years Pressure!
SOI in Harsh-Environment Application

Total Dose radiation — cumulative radiation from trapped protons, electrons, solar energetic particles. These can cause permanent damage to most unhardened electronics. Especially for SOI Circuits!

Gate-Oxide, Buried-Oxide, Field-Oxide, Island-Edge and Substrate Engineering.

Research on TID Hardening offers more chances for harsh environments application!
Relative Works of our Research Group

- **SOI CMOS Device Physics**

<table>
<thead>
<tr>
<th>27#-1@2</th>
<th>vt</th>
<th>pre</th>
<th>100k</th>
<th>300k</th>
<th>500k</th>
<th>1000k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.902056</td>
<td>0.888492</td>
<td>0.847343</td>
<td>0.80956</td>
<td>0.786874</td>
</tr>
<tr>
<td>shift</td>
<td></td>
<td>–0.01356</td>
<td>–0.05471</td>
<td>–0.0925</td>
<td>–0.11518</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>27#-5@2</th>
<th>vt</th>
<th>pre</th>
<th>100k</th>
<th>300k</th>
<th>500k</th>
<th>1000k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.877937</td>
<td>0.867269</td>
<td>0.814606</td>
<td>0.770182</td>
<td>0.685316</td>
</tr>
<tr>
<td>shift</td>
<td></td>
<td>–0.01067</td>
<td>–0.06333</td>
<td>–0.10775</td>
<td>–0.19262</td>
<td></td>
</tr>
</tbody>
</table>

Physical Theories; SOI CMOS Device Models.
Relative Works of our Research Group

- Large Scale SOI CMOS Circuits

SRAM & Structured ASIC Circuits
Relative Works of our Research Group

- **SOI CMOS Reliability and Electro-Magnetic Compatibility**

Temperature, voltage and radiation.

Reliability; Electro-Magnetic Compatibility; Radiation Hardening.
Relative Works of our Research Group

- Radiation Hardening by Technology and Circuit Design

![Graphs and Diagrams]

\[I(t) = f(LET) \cdot (e^{-\alpha t} - e^{-\beta t}) \]

Reliability; Electro-Magnetic Compatibility; Radiation Hardening.
Summary

- **Advanced SOI Electronics**
 - First choice beyond 10nm node CMOS Tech.
 - Possibility to fabricate complex SOC.
 - Ability for harsh environment application.

- **Relative Works of our group**
 - SOI CMOS Device Physics.
 - Large Scale SOI CMOS Circuits.
 - SOI CMOS Reliability and EMC.
 - Radiation Hardening by Tech. and Design.

- **Farther efforts to improve chip ability**
 - Find and solve related scientific problems.
 - To get better chips with excellent performance.
THANKS!