New results on exotic baryon resonances at LHCb

Liming Zhang
(Tsinghua University)

On behalf of LHCb Collaboration

10th International Workshop on e^+e^- collisions from Phi to Psi
(USTC, Hefei, China)
These multiquark states would be short-lived \(\sim 10^{-23} \) s "resonances" whose presences are detected by mass peaks & angular distributions showing the unique \(J^P \) quantum numbers.
Curious history of pentaquark Θ^+ search

- No convincing states 50 years after Gell-mann paper proposing $qqqqq\bar{q}$ states
- Prediction: $\Theta^+ (uudd\bar{s})$ could exist with $m \approx 1530$ MeV
- In 2003, 10 experiments reported seeing narrow peaks of K^0p or K^+n, all $>4\sigma$
- High statistics repeats from JLab showed the original claims were fluctuation
- It was merely a case of “bump hunting”
Tetraquark

- Experimental evidence started to appear only recently
- $Z(4430)^+$ (Belle, LHCb)
 - Both analyses performed full amplitude fits

- $Z_c(3900)^+$ and its families (BESIII)
- $Z_b(10610)^+$ and $Z_b(10650)^+$ (Belle)
- These give support to the possibility of pentaquark states
LHCb detector at LHC

- Advantages over e^+e^- B-factories:
 - ~1000x larger b production rate
 - produce b-baryons at the same time as B-mesons
 - long visible lifetime of b-hadrons (no backgrounds from the other b-hadron)

- Advantages over GPDs:
 - RICH detectors for $\pi/K/p$ discrimination (smaller backgrounds)
 - Small event size allows large trigger bandwidth (up to 5 kHz in Run I); all devoted to flavor physics
The decay first observed by LHCb and used to measure Λ_b^0 lifetime:

- LHCb-PAPER-2013-032 (PRL 111, 102003)

The background is only 5.4% in the signal region!

26,007±166 Λ_b^0 candidates

LHCb $\Lambda_b^0 \to J/\psi \ p \ K^-$
\(\Lambda_b^0 \rightarrow J/\psi pK^- \): unexpected structure in \(m_{J/\psi p} \)

- Unexpected, narrow peak in \(m_{J/\psi p} \)
- Many checks done to ensure it is not an “artifact” of selection:
 - Veto \(B_s \rightarrow J/\psi K^- K^+ \) & \(B^0 \rightarrow J/\psi K^- \pi^+ \) after changing \(p \) to \(K \), or \(K \) to \(\pi \)
 - Clone and ghost tracks carefully eliminated
 - Exclude \(\Xi_b \) decays as a possible source
- Could it be a reflection of interfering \(\Lambda^* \)'s \(\rightarrow p K^- \)?
 - Proper amplitude analysis absolutely necessary!
Amplitude Analysis Formalism

- Helicity formalism
 - Allows for the conventional $\Lambda^* \rightarrow pK$ resonances to interfere with pentaquark states $P_c^+ \rightarrow J/\psi p$
 - Use $m(K^-p)$ & 5 decay angles as fit parameters.

\[|\mathcal{M}|^2 = \sum_{\lambda_{A_b}^0} \sum_{\lambda_p} \sum_{\Delta \lambda_\mu} \left| \mathcal{M}_{\lambda_{A_b}^0, \lambda_p, \Delta \lambda_\mu}^{\Lambda^*} + e^{i \Delta \lambda_\mu \alpha_{\mu}} \sum_{\lambda_{P_c}} \frac{1}{2} \frac{d}{\chi_{P_c, \lambda_p}^{P_c}}(\theta_p) \mathcal{M}_{\lambda_{A_b}^0, \lambda_{P_c}^{P_c}, \Delta \lambda_\mu}^{P_c} \right|^2 \]

Λ^* Decay Chain

P_c^+ Decay Chain
Λ* resonance model

\[\mathcal{H}_{\Lambda \to BC}^{L} = \sum_{L} \sum_{S} \sqrt{\frac{2L+1}{2J_{A}+1}} B_{L,S} \left(\begin{array}{c} J_{B} \cr \lambda_{B} \cr J_{C} \cr -\lambda_{C} \end{array} \right) \left(\begin{array}{c} S \cr \lambda_{B} - \lambda_{C} \end{array} \right) \times \left(\begin{array}{c} L \cr 0 \cr S \cr \lambda_{B} - \lambda_{C} \end{array} \right) \]

In Λ* decay:

\[P_{A} = P_{B} P_{C}^{-} (-1)^{L} \]

<table>
<thead>
<tr>
<th>State</th>
<th>J^P</th>
<th>M_0 (MeV)</th>
<th>Γ_0 (MeV)</th>
<th># Reduced</th>
<th># Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ(1405)</td>
<td>1/2^-</td>
<td>1405.1^{+1.3}_{-1.0}</td>
<td>50.5 ± 2.0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Λ(1520)</td>
<td>3/2^-</td>
<td>1519.5 ± 1.0</td>
<td>15.6 ± 1.0</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Λ(1600)</td>
<td>1/2^+</td>
<td>1600</td>
<td>150</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Λ(1670)</td>
<td>1/2^-</td>
<td>1670</td>
<td>35</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Λ(1690)</td>
<td>3/2^-</td>
<td>1690</td>
<td>60</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Λ(1800)</td>
<td>1/2^-</td>
<td>1800</td>
<td>300</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Λ(1810)</td>
<td>1/2^+</td>
<td>1810</td>
<td>150</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Λ(1820)</td>
<td>5/2^+</td>
<td>1820</td>
<td>80</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Λ(1830)</td>
<td>5/2^-</td>
<td>1830</td>
<td>95</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Λ(1890)</td>
<td>3/2^+</td>
<td>1890</td>
<td>100</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Λ(2100)</td>
<td>7/2^-</td>
<td>2100</td>
<td>200</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Λ(2110)</td>
<td>5/2^+</td>
<td>2110</td>
<td>200</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Λ(2350)</td>
<td>9/2^+</td>
<td>2350</td>
<td>150</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Λ(2585)</td>
<td>5/2^-?</td>
<td>≈2585</td>
<td>200</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

No high-J^P high-mass states

All states, all L

of fit parameters: 64 146
Extended model fits with only Λ^*

- Fails to reproduce the $M(J/\psi p)$ peaking structures!
- Other possibilities we have studied:
 - All Σ^{*0} (I=1), isospin violating decay
 - Two new Λ^* with free $m&Gamma$
 - 4 non-resonant Λ^* with $J^P = 1/2^\pm$ and $3/2^\pm$
- Still fail to describe the data
Extended model fits with 1 P_c^+

- Try all J^P up to $7/2^\pm$. All don’t give good fit
2 P_c^+ fit in reduced model

- Best fit has $J^P= (3/2^- \text{ (low)}, 5/2^+(\text{high}))$, also $(3/2^+, 5/2^-)$ & $(5/2^+, 3/2^-)$ are preferred
$M(J/\psi p)$ in $M(Kp)$ Slices

(a) $m_{Kp} < 1.55$ GeV
(b) $1.55 < m_{Kp} < 1.70$ GeV
(c) $1.70 < m_{Kp} < 2.00$ GeV
(d) 2.00 GeV $< m_{Kp}$

Events/(20 MeV)

- data
- total fit
- background
- $\Lambda(1405)$
- $\Lambda(1520)$
- $\Lambda(1600)$
- $\Lambda(1670)$
- $\Lambda(1690)$
- $\Lambda(1800)$
- $\Lambda(1810)$
- $\Lambda(1820)$
- $\Lambda(1830)$
- $\Lambda(1890)$
- $\Lambda(2100)$
- $\Lambda(2110)$

Second P_c now obvious!
Angular distributions

All data

P_c enriched region ($m_{Kp}>2$ GeV)

• Good description of the data in all 6 dimensions!
Data preference for opposite parity P_c^+ states

- Positive interference between the P_c states
 - (display before efficiency)

- Negative interference between the P_c states
 - (display after efficiency)

- This interference pattern only for states with opposite parity

Events/(20 MeV)

$\textit{m_{Kp}} < 1.55 \text{ GeV}$

$1.55 < \textit{m_{Kp}} < 1.70 \text{ GeV}$

$1.70 < \textit{m_{Kp}} < 2.00 \text{ GeV}$

$2.00 \text{ GeV} < \textit{m_{Kp}}$

$\textit{m_{J/\psi p}}$ [GeV]

$\textit{m_{J/\psi p}}$ [GeV]

Combined P_c

$P_c(4450)$

$P_c(4380)$

LHCb
Significances and results

- Significance include systematic uncertainty
- Fit improves greatly, for 1 \(P_c^+ \) \(\Delta(-2\ln L)=216=14.7^2 \), adding the 2nd \(P_c^+ \) improves by 135=11.6^2
- Toy MCs used to obtain significances based on \(\Delta(-2\ln L) \)

<table>
<thead>
<tr>
<th></th>
<th>(P_c(4380)^+)</th>
<th>(P_c(4450)^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significance</td>
<td>9(\sigma)</td>
<td>12(\sigma)</td>
</tr>
<tr>
<td>Mass (MeV)</td>
<td>4380 ± 8 ± 29</td>
<td>4449.8 ± 1.7 ± 2.5</td>
</tr>
<tr>
<td>Width (MeV)</td>
<td>205 ± 18 ± 86</td>
<td>39 ± 5 ± 19</td>
</tr>
<tr>
<td>Fit fraction(%)</td>
<td>8.4 ± 0.7 ± 4.2</td>
<td>4.1 ± 0.5 ± 1.1</td>
</tr>
<tr>
<td>(\mathcal{B}(\Lambda_b^0 \to P_c^+K^-; P_c^+ \to J/\psi p))</td>
<td>((2.56 \pm 0.22 \pm 1.28^{+0.46}_{-0.36}) \times 10^{-5})</td>
<td>((1.25 \pm 0.15 \pm 0.33^{+0.22}_{-0.18}) \times 10^{-5})</td>
</tr>
</tbody>
</table>

Branching ratio results are submitted to Chin. Phys. C (arXiv:1509.00292)
Ref: \(\mathcal{B}(B^0 \to Z^-(4430)K^+; Z^- \to J/\psi\pi^-) = (3.4 \pm 0.5^{+0.9}_{-1.9} \pm 0.2) \times 10^{-5} \)
Cross-checks

- Two independently coded fitters using different background subtractions (sFit & cFit)

- Split data show consistency 2011/2012, magnet up/down, $\Lambda^0_b/\bar{\Lambda}^0_b$, two Λ^0_b p_T bins

- Selection varied
 - BDTG>0.5 instead of 0.9 (default)
 - B^0 and B_s reflections modelled in the fit instead of veto
Breit-Wigner amplitude

- Often a relativistic Breit-Wigner function is used to model resonance
- \(q \) is daughter momentum in the resonance rest frame

\[
BW(m|M_0, \Gamma_0) = \frac{1}{M_0^2 - m^2 - iM_0\Gamma(m)}
\]

\[
\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0} \right)^{2L+1} \frac{M_0}{m} B'_L(q, q_0, d)^2
\]

Blatt-Weisskopf function for orbital angular momentum \((L)\) barrier factors

- Circular trajectory in complex plane is characteristic of resonance
- Circle can be rotated by arbitrary phase
- Phase change of 180° across the pole
Argand diagrams

P_c^+ amplitudes for 6 $m_{J/ψp}$ bins between $+\Gamma$ & $-\Gamma$ around the resonance mass

- Good evidence for the resonant character of $P_c(4450)^+$
- The errors for $P_c(4380)^+$ are too large to be conclusive
Different types of tetra- and penta-quarks
• Crucial for understanding QCD & points to other states.

Maiani, Polosa & Riquer [arXiv:1507.04980]

Summarized by Burns [arXiv:1509.02460]

+ kinematic effects
Conclusions

• LHCb has found two pentaquark candidates decaying to $J/\psi p$ with overwhelming significance in a state of the art amplitude analysis: they will not go away!
• The preferred J^P are of opposite parity, with one state having $J=3/2$ and the other $5/2$
• Both the P_c^+ and $Z_{(c)}^+$ states contain $c\bar{c}$, strong binding due to this?
• Determination their internal binding mechanism will require more study
• We look forward to establishing the structure of many other states or other decay modes
Backup
sFit

- **Signal PDF**

 \[
 \mathcal{P}_{\text{sig}}(m_{K^p}, \Omega | \vec{\omega}) = \frac{1}{I(\vec{\omega})} |\mathcal{M}(m_{K^p}, \Omega | \vec{\omega})|^2 \Phi(m_{K^p}) \epsilon(m_{K^p}, \Omega)
 \]

 - $\vec{\omega}$: fitting parameters
 - Φ: phase-space = pq
 - ϵ: efficiency

- **sFit minimizes**

 \[
 -2 \ln \mathcal{L}(\vec{\omega}) = -2s_W \sum_i W_i \ln \mathcal{P}_{\text{sig}}(m_{K^p i}, \Omega_i | \vec{\omega})
 \]

 \[
 = -2s_W \sum_i W_i \ln |\mathcal{M}(m_{K^p i}, \Omega_i | \vec{\omega})|^2 + 2s_W \ln I(\vec{\omega}) \sum_i W_i
 \]

 \[
 - 2s_W \sum_i W_i \ln[\Phi(m_{K^p i}) \epsilon(m_{K^p i}, \Omega_i)].
 \]

 - W_i is s Weighs from $m(J/\psi K^p)$ fits
 - $s_W = \Sigma_i W_i / \Sigma_i W_i^2$ constant factor to correct uncertainty

- **Normalization calculated using simulated PHSP MC ($\Phi \epsilon$ included)**

- w^{MC} discuss later

- Constant (invariant of $\vec{\omega}$), is dropped
- No need to know $\Phi \epsilon$ parameterization
cFit

- cFit uses events in $\pm 2\sigma$ window ($\sigma=7.52\text{MeV}$)
- Total PDF $\mathcal{P}(m_{Kp}, \Omega|\bar{\omega}) = (1 - \beta)\mathcal{P}_{\text{sig}}(m_{Kp}, \Omega|\bar{\omega}) + \beta \mathcal{P}_{\text{bkg}}(m_{Kp}, \Omega)$
- Background is described by sidebands 5σ-13.5σ
- cFit minimizes

$$-\ln \mathcal{L}(\bar{\omega}) = \sum_i \ln \left[|\mathcal{M}(m_{Kp i}, \Omega_i|\bar{\omega})|^2 + \frac{\beta I(\bar{\omega})}{(1-\beta)I_{\text{bkg}}} \frac{\mathcal{P}^u_{\text{bkg}}(m_{Kp i}, \Omega_i)}{\Phi(m_{Kp i})\epsilon(m_{Kp i}, \Omega_i)} \right]$$

$$+ N \ln I(\bar{\omega}) + \text{constant},$$

Background fraction $\beta=5.4\%$

Signal efficiency parameterization becomes part of background parameterization, effects only a tiny part of total PDF because of small β
cFit efficiency and background parameterizations

- Both use similar ways

\[\epsilon(m_{Kp}, \Omega) = \epsilon_1(m_{Kp}, \cos \theta_\Lambda) \cdot \epsilon_2(\cos \theta_{\Lambda_0} | m_{Kp}) \cdot \epsilon_3(\cos \theta_{J/\psi} | m_{Kp}) \cdot \epsilon_4(\phi_K | m_{Kp}) \cdot \epsilon_5(\phi_\mu | m_{Kp}) \]

\[\frac{P^{u}_{bkg}(m_{Kp}, \Omega)}{\Phi(m_{Kp})} = P_{bkg_1}(m_{Kp}, \cos \theta_\Lambda) \cdot P_{bkg_2}(\cos \theta_{\Lambda_0} | m_{Kp}) \]

\[\cdot P_{bkg_3}(\cos \theta_{J/\psi} | m_{Kp}) \cdot P_{bkg_4}(\phi_K | m_{Kp}) \cdot P_{bkg_5}(\phi_\mu | m_{Kp}). \]
Amplitude Analysis Formalism II

- The matrix element for the Λ^* decay is:

\[
\mathcal{M}^{\Lambda^*}_{\lambda_{\Lambda^0}, \lambda_{\Lambda^*}, \Delta \lambda_{\mu}} \equiv \sum_n \sum_{\lambda_{\Lambda^*}} \sum_{\lambda_{\psi}} \mathcal{H}^{\Lambda^0 \rightarrow \Lambda^* \psi}_{\lambda_{\Lambda^0}, \lambda_{\Lambda^*}} D^{\frac{1}{2}}_{\lambda_{\Lambda^0}, \lambda_{\Lambda^*} - \lambda_{\psi}} (0, \theta_{\Lambda^0}, 0) \nonumber
\]

\[
\mathcal{H}^{\Lambda^* \rightarrow K \psi}_{\lambda_{\Lambda^*}, \lambda_{\psi}} D^{J_{\Lambda^*}}_{\lambda_{\Lambda^*}, \lambda_{\psi}} (\phi_K, \theta_{\Lambda^*}, 0) R_n (m_{K\psi}) D^{\frac{1}{4}}_{\lambda_{\psi}, \Delta \lambda_{\mu}} (\phi_\mu, \theta_\psi, 0) \nonumber
\]

- And for the P_C:

\[
\mathcal{M}^{P_C}_{\lambda_{\Lambda^0}, \lambda_{P_C}, \Delta \lambda_{\mu}^{P_C}} \equiv \sum_j \sum_{\lambda_{P_C}} \sum_{\lambda_{\psi}^{P_C}} \mathcal{H}^{\Lambda^0 \rightarrow P_{Cj} K}_{\lambda_{\Lambda^0}, \lambda_{P_C}} D^{\frac{1}{2}}_{\lambda_{\Lambda^0}, \lambda_{P_C}} (\phi_{P_C}, \theta_{P_C}, 0) \nonumber
\]

\[
\mathcal{H}^{P_{Cj} \rightarrow \psi \psi}_{\lambda_{\psi}, \lambda_{P_C}} D^{J_{P_{Cj}}}_{\lambda_{\psi}, \lambda_{P_C} - \lambda_{P_C}} (\phi_{\psi}, \theta_{P_C}, 0) R_j (m_{\psi \psi}) D^{\frac{1}{4}}_{\lambda_{\psi}, \Delta \lambda_{\mu}^{P_C}} (\phi_{\psi}, \theta_{\psi}, 0) \nonumber
\]
• The matrix element for the Λ^* decay is:

$$
\mathcal{M}_{\Lambda^*}^{A*} = \sum_n \sum_{\lambda_{\Lambda^*}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{\Lambda^*}^0, \lambda_{\psi}} \mathcal{D}_{\lambda_{\Lambda^*}^0, \lambda_{\Lambda^*}^0 - \lambda_{\psi}} (0, \theta_{\Lambda^0}, 0)^*
\mathcal{H}_{\lambda_{\Lambda^*}^0, \lambda_{\Lambda^*}^0} \mathcal{D}_{\lambda_{\Lambda^*}^0} (\phi_K, \theta_{\Lambda^*}, 0)^* R_n(m_{K^0}) \mathcal{D}_{\lambda_{\psi}, \Delta \lambda_{\mu}} (\phi_{\mu}, \theta_{\psi}, 0)^*
$$

• And for the P_c:

$$
\mathcal{M}_{P_c}^{P_c} = \sum_j \sum_{\lambda_{P_c}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{P_c}^0, \lambda_{\psi}} \mathcal{D}_{\lambda_{P_c}^0} (\phi_{P_c}, \theta_{P_c}, 0)^*
\mathcal{H}_{\lambda_{P_c}^0, \lambda_{P_c}} \mathcal{D}_{\lambda_{P_c}^0, \lambda_{P_c}^0 - \lambda_{P_c}} (\phi_{\psi}, \theta_{P_c}, 0)^* R_j(m_{\psi^0}) \mathcal{D}_{\lambda_{\psi}, \Delta \lambda_{\mu}} (\phi_{\mu}, \theta_{\psi}, 0)^*
$$

• $R(m)$ are resonance parametrizations, generally are described by Breit-Wigner amplitude
• The matrix element for the Λ^* decay is:

\[
\mathcal{M}_{\Lambda^*_0, \Lambda_0^*, \Delta \mu} = \sum_n \sum_{\lambda_{\Lambda^*}} \sum_{\lambda_\psi} \mathcal{H}_{\Lambda^*_0 \to \Lambda_n^*} D_{\lambda_{\Lambda_0^*}, \lambda_\psi} \left(0, \theta_{\Lambda_0^*}, 0 \right)^* \]

$$\mathcal{H}_{\Lambda_n^* \to K_P} D_{\lambda_{\Lambda_n^*}, \lambda_\psi} \left(\phi_K, \theta_{\Lambda_n^*}, 0 \right)^* R_n \left(m_{K_P} \right) D_{\lambda_\psi, \Delta \mu} \left(\phi_\mu, \theta_\psi, 0 \right)^*$$

• And for the P_c:

\[
\mathcal{M}_{P_c, \Lambda_0^*, \Delta \mu} = \sum_j \sum_{\lambda_{P_c}} \sum_{\lambda_\psi} \mathcal{H}_{\Lambda^*_0 \to P_{cj}} D_{\lambda_{\Lambda_0^*}, \lambda_{P_c}} \left(\phi_{P_c}, \theta_{P_c}, 0 \right)^* \]

$$\mathcal{H}_{P_{cj} \to \psi} D_{\lambda_{P_c}, \lambda_\psi} \left(\phi_\psi, \theta_{P_c}, 0 \right)^* R_j \left(m_{\psi} \right) D_{\lambda_\psi, \Delta \mu} \left(\phi_\mu, \theta_\psi, 0 \right)^*$$

• \mathcal{H} are complex helicity couplings determined from the fit.
Amplitude Analysis Formalism II

- The matrix element for the Λ^* decay is:

$$M_{\Lambda^*}^{\Lambda_0^*, \lambda_p, \Delta \lambda_\mu} \equiv \sum_n \sum_{\lambda_{\Lambda^*}} \sum_{\lambda_\psi} \mathcal{H}_{\Lambda_b^{0} \rightarrow \Lambda_{\Lambda^*}^{0}, \lambda_\psi}^{\Lambda_0^*, \lambda_\psi} D^{1/2}_{\Lambda_\psi, \lambda_{\Lambda^*}^{0}, \lambda_{\Lambda^*}^{0} - \lambda_\psi} (0, \theta_{\Lambda_0^*}, 0)^*$$

- And for the P_c:

$$M_{P_c}^{\Lambda_0^*, \lambda_p^{P_c}, \Delta \lambda_\mu^{P_c}} \equiv \sum_j \sum_{\lambda_{P_c}} \sum_{\lambda_\psi} \mathcal{H}_{\Lambda_b^{0} \rightarrow P_{cj} K}^{\Lambda_0^*, \lambda_\psi} D^{1/2}_{\lambda_{\Lambda_b^{0}}, \lambda_{P_c}, \lambda_{P_c}} (\phi_{P_c}, \theta_{P_c}, 0)^*$$

- Wigner D-matrix arguments are Euler angles corresponding to the fitted angles.
• They are added together as:

\[|M|^2 = \sum_{\lambda_{A_0}} \sum_{\lambda_p} \sum_{\Delta \lambda_{\mu}} |M_{\lambda_{A_0}, \lambda_p, \Delta \lambda_{\mu}}^{A*} + e^{i \Delta \lambda_{\mu}} \alpha_{\mu} \sum_{\lambda_p^C} d^{\frac{1}{2}}_{\lambda_p^C, \lambda_p} (\theta_{\lambda_p}) M_{\lambda_{A_0}, \lambda_p^C, \Delta \lambda_{\mu}}^{P_c} |^2 \]

• \(\alpha_{\mu} \) and \(\theta_{\lambda_p} \) are rotation angles to align the final state helicity axes of the \(\mu \) and \(p \), as helicity frames used are different for the two decay chains.

• Helicity couplings \(\mathcal{H} \Rightarrow \) LS amplitudes \(B \) via:

\[\mathcal{H}_{\lambda_B, \lambda_C}^{A \rightarrow BC} = \sum_L \sum_S \sqrt{\frac{2L+1}{2J_A+1}} B_{L,S} \begin{pmatrix} J_B & J_C & S \\ \lambda_B & -\lambda_C & \lambda_B - \lambda_C \end{pmatrix} \begin{pmatrix} L & S & J_A \\ 0 & \lambda_B - \lambda_C & \lambda_B - \lambda_C \end{pmatrix} \]

– Convenient way to enforce parity conservation in the strong decays via: \(P_A = P_B P_C (-1)^L \)
Impact parameter: \(\sigma_{IP} = 20 \ \mu m \)
Proper time: \(\sigma_{\tau} = 45 \ \text{fs} \) for \(B_s^0 \to J/\psi \phi \) or \(D_s^+ \pi^- \)
Momentum: \(\Delta p/p = 0.4 \sim 0.6\% \) (5 - 100 GeV/c)
Mass: \(\sigma_m = 8 \ \text{MeV}/c^2 \) for \(B \to J/\psi X \) (constrained \(m_{J/\psi} \))
RICH \(K - \pi \) separation: \(\epsilon(K \to K) \sim 95\% \) \(\text{mis-ID} \) \(\epsilon(\pi \to K) \sim 5\% \)
Muon ID: \(\epsilon(\mu \to \mu) \sim 97\% \) \(\text{mis-ID} \) \(\epsilon(\pi \to \mu) \sim 1 - 3\% \)
ECAL: \(\Delta E/E = 1 \oplus 10\%/\sqrt{E(\text{GeV})} \)
Extended model fits with 2 P_c^+

- Leads to a good fit
- The second broad P_c^+ is visible in other projections (shown later)
- It also modifies the narrow P_c^+’s decay angular distribution via interference to match with the data distribution
Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>(M_0) (MeV)</th>
<th>(\Gamma_0) (MeV)</th>
<th>Fit fractions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Extended vs. reduced</td>
<td>21</td>
<td>0.2</td>
<td>54</td>
</tr>
<tr>
<td>(\Lambda^*) masses & widths</td>
<td>7</td>
<td>0.7</td>
<td>20</td>
</tr>
<tr>
<td>Proton ID</td>
<td>2</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>(10 < p_p < 100) GeV</td>
<td>0</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>Nonresonant</td>
<td>3</td>
<td>0.3</td>
<td>34</td>
</tr>
<tr>
<td>Separate sidebands</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>(J^P) ((3/2^+, 5/2^-)) or ((5/2^+, 3/2^-))</td>
<td>10</td>
<td>1.2</td>
<td>34</td>
</tr>
<tr>
<td>(d = 1.5 - 4.5) GeV(^{-1})</td>
<td>9</td>
<td>0.6</td>
<td>19</td>
</tr>
<tr>
<td>(L_{P_c}^0) (\Lambda_b^0 \to P_c^+) (low/high) (K^-)</td>
<td>6</td>
<td>0.7</td>
<td>4</td>
</tr>
<tr>
<td>(L_{P_c}^0) (P_c^+) (low/high) (\to J/\psi p)</td>
<td>4</td>
<td>0.4</td>
<td>31</td>
</tr>
<tr>
<td>(L_{\Lambda_b}^{P_c}^0) (\Lambda_b^0 \to J/\psi \Lambda^*)</td>
<td>11</td>
<td>0.3</td>
<td>20</td>
</tr>
<tr>
<td>Efficiencies</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
</tr>
<tr>
<td>Change (\Lambda(1405)) coupling</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td>29</td>
<td>2.5</td>
<td>86</td>
</tr>
<tr>
<td>sFit/cFit cross check</td>
<td>5</td>
<td>1.0</td>
<td>11</td>
</tr>
</tbody>
</table>

\(\Lambda^*\) modelling contributes the largest
Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>M_0 (MeV)</th>
<th>Γ_0 (MeV)</th>
<th>Fit fractions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Extended vs. reduced</td>
<td>21</td>
<td>0.2</td>
<td>54</td>
</tr>
<tr>
<td>Λ^* masses & widths</td>
<td>7</td>
<td>0.7</td>
<td>20</td>
</tr>
<tr>
<td>Proton ID</td>
<td>2</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>$10 < p_p < 100$ GeV</td>
<td>0</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>Nonresonant</td>
<td>3</td>
<td>0.3</td>
<td>34</td>
</tr>
<tr>
<td>Separate sidebands</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>J^P (3/2$^+$, 5/2$^-$) or (5/2$^+$, 3/2$^-$)</td>
<td>10</td>
<td>1.2</td>
<td>34</td>
</tr>
<tr>
<td>$d = 1.5 - 4.5$ GeV$^{-1}$</td>
<td>9</td>
<td>0.6</td>
<td>19</td>
</tr>
<tr>
<td>$L_{P_c}^0 \Lambda_b^0 \rightarrow P_c^+ \ (low/high) K^-$</td>
<td>6</td>
<td>0.7</td>
<td>4</td>
</tr>
<tr>
<td>$L_{P_c}^0 P_c^+ \ (low/high) \rightarrow J/\psi p$</td>
<td>4</td>
<td>0.4</td>
<td>31</td>
</tr>
<tr>
<td>$L_{A_b}^0 \Lambda_b^0 \rightarrow J/\psi \Lambda^*$</td>
<td>11</td>
<td>0.3</td>
<td>20</td>
</tr>
<tr>
<td>Efficiencies</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
</tr>
<tr>
<td>Change $\Lambda(1405)$ coupling</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td>29</td>
<td>2.5</td>
<td>86</td>
</tr>
<tr>
<td>sFit/cFit cross check</td>
<td>5</td>
<td>1.0</td>
<td>11</td>
</tr>
</tbody>
</table>

Alternate J^P fits give sizeable uncertainty
Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>M_0 (MeV)</th>
<th>Γ_0 (MeV)</th>
<th>Fit fractions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Extended vs. reduced</td>
<td>21</td>
<td>0.2</td>
<td>54</td>
</tr>
<tr>
<td>Λ^* masses & widths</td>
<td>7</td>
<td>0.7</td>
<td>20</td>
</tr>
<tr>
<td>Proton ID</td>
<td>2</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>$10 < p_p < 100$ GeV</td>
<td>0</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>Nonresonant</td>
<td>3</td>
<td>0.3</td>
<td>34</td>
</tr>
<tr>
<td>Separate sidebands</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>$J^P (3/2^+, 5/2^-)$ or $(5/2^+, 3/2^-)$</td>
<td>10</td>
<td>1.2</td>
<td>34</td>
</tr>
<tr>
<td>$d = 1.5 - 4.5$ GeV$^{-1}$</td>
<td>9</td>
<td>0.6</td>
<td>19</td>
</tr>
<tr>
<td>$L_{Pc}^{P_c} \Lambda_b^0 \rightarrow P_c^+ (\text{low/high}) K^-$</td>
<td>6</td>
<td>0.7</td>
<td>4</td>
</tr>
<tr>
<td>$L_{Pc}^{P_c} P_c^+ (\text{low/high}) \rightarrow J/\psi p$</td>
<td>4</td>
<td>0.4</td>
<td>31</td>
</tr>
<tr>
<td>$L_{Pc}^{P_c} \Lambda_b^0 \rightarrow J/\psi \Lambda^*$</td>
<td>11</td>
<td>0.3</td>
<td>20</td>
</tr>
<tr>
<td>Efficiencies</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
</tr>
<tr>
<td>Change $\Lambda(1405)$ coupling</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td>29</td>
<td>2.5</td>
<td>86</td>
</tr>
<tr>
<td>sFit/cFit cross check</td>
<td>5</td>
<td>1.0</td>
<td>11</td>
</tr>
</tbody>
</table>

Varying choices in mass depend function also give sizeable uncertainty
Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>M_0 (MeV)</th>
<th>Γ_0 (MeV)</th>
<th>Fit fractions (%)</th>
<th>$\Lambda(1405)$</th>
<th>$\Lambda(1520)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Extended vs. reduced</td>
<td>21</td>
<td>0.2</td>
<td>54</td>
<td>10</td>
<td>3.14</td>
</tr>
<tr>
<td>Λ^* masses & widths</td>
<td>7</td>
<td>0.7</td>
<td>20</td>
<td>4</td>
<td>0.58</td>
</tr>
<tr>
<td>Proton ID</td>
<td>2</td>
<td>0.3</td>
<td>1</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td>$10 < p_p < 100$ GeV</td>
<td>0</td>
<td>1.2</td>
<td>1</td>
<td>1</td>
<td>0.09</td>
</tr>
<tr>
<td>Nonresonant</td>
<td>3</td>
<td>0.3</td>
<td>34</td>
<td>2</td>
<td>2.35</td>
</tr>
<tr>
<td>Separate sidebands</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0.24</td>
</tr>
<tr>
<td>J^P (3/2+, 5/2−) or (5/2+, 3/2−)</td>
<td>10</td>
<td>1.2</td>
<td>34</td>
<td>10</td>
<td>0.76</td>
</tr>
<tr>
<td>$d = 1.5 - 4.5$ GeV$^{-1}$</td>
<td>9</td>
<td>0.6</td>
<td>19</td>
<td>3</td>
<td>0.29</td>
</tr>
<tr>
<td>$L_{P_C}^0 \Lambda_b^0 \rightarrow P_C^+(low/high)K^-$</td>
<td>6</td>
<td>0.7</td>
<td>4</td>
<td>8</td>
<td>0.37</td>
</tr>
<tr>
<td>$L_{P_C}^0 P_C^+(low/high) \rightarrow J/\psi p$</td>
<td>4</td>
<td>0.4</td>
<td>31</td>
<td>7</td>
<td>0.63</td>
</tr>
<tr>
<td>$L_{A_b^0}^0 \Lambda_b^0 \rightarrow J/\psi \Lambda^*$</td>
<td>11</td>
<td>0.3</td>
<td>20</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>Efficiencies</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
<td>0</td>
<td>0.13</td>
</tr>
<tr>
<td>Change $\Lambda(1405)$ coupling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td>29</td>
<td>2.5</td>
<td>86</td>
<td>19</td>
<td>4.21</td>
</tr>
<tr>
<td>sFit/cFit cross check</td>
<td>5</td>
<td>1.0</td>
<td>11</td>
<td>3</td>
<td>0.46</td>
</tr>
</tbody>
</table>

sFit/cFit give consistent results
J/ψ K System

- **J/ψ K system** is well described by the Λ* and P_c reflections.
LHCb detector at LHC

- **Advantages over e^+e^- B-factories:**
 - ~1000x larger b production rate
 - **produce b-baryons at the same time as B-mesons**
 - long visible lifetime of b-hadrons (no backgrounds from the other b-hadron)

- **Advantages over GPDs:**
 - RICH detectors for \(\pi/K/p \) discrimination (smaller backgrounds)
 - Small event size allows large trigger bandwidth (up to 5 kHz in Run I); all devoted to flavor physics
Different types of tetra- and penta-quarks

“plain”

diquark model

triquark model

hydro-charmonium model

molecular model

baryon model
Prejudices against pentaquark

• No convincing states 50 years after Gell-mann paper proposing $qqqqq$ states

• Previous “observations” of several pentaquark states have been refuted

• These included
 – $\Theta^+ \rightarrow K^0 p, K^+ n$, mass=1.54 GeV, $\Gamma \sim 10$ MeV
 – Resonance in $D^*^- p$ at 3.10 GeV, $\Gamma = 12$ MeV
 – $\Xi^- \rightarrow \Xi^- \pi^-$, mass=1.862 GeV, $\Gamma < 18$ MeV

• Generally they were found/debunked by looking for “bumps” in mass spectra circa 2004