Status of the TPC detector module and R&D activities at CEPC

Huirong QI
on behalf of the CEPC TPC working group

April 8th, 2016, IHEP, Beijing
Outline

- Detector requirements
- TPC detector concept
- Current R&D activities
- Summary and outlook
Detector requirements
General detector requirements

- Design and performance goals of TPC (Stand alone)
 - Momentum resolution at 3.5 Tesla
 - Position resolution in $r\Phi$
 - Pad pitch / no. padrows
 - Performance

- 2-hits resolution in $r\Phi$

Target:

- Fine detector modules
- Stable and low material budget structure
- Low power readout electronics
- Alignment and calibration system for distortion
Critical detector requirements @CEPC

- NO power pulse mode
 - Detector module without the Gate Device for IBF: <0.1%
 - Continuous device for ions
 - Continuously working time
 - Lower power of the electronics readout: <5mW/ch
 - Lower material budget structure
 - Precise time stamping of signal

- Complex MDI design
 - Obvious E/B field distortion in the chamber
 - Alignment and calibration for drift velocity, track,…
Critical challenge: Ion Back Flow

- High performance requirements by the TPC relies strongly on the quality of the electric field in the drift volume!
 - Ions drift back into the gas volume in CEPC TPC
 - Many such the discs in the chamber with ions
 - Ions could reduce the momentum resolution along the drift length
 - Ions should have to be neutralized

Ions simulation @ILD TPC

High X-ray dose to reduce the Double GEMs Gain @ IHEP
TPC detector concept @CEPC
Detector layout

- **Time Projection Chamber detector**
 - Detector module (Critical technical challenges)
 - Drift chamber
 - Electronics readout
 - Working gas supply
 - Alignment and calibration system
 - Inner radius
 - Pad size
 - Number of tracker
 - B Field
 - Support structure
 - Drift cathode
Detector modules options

- The large prototype (LP1)@ILD-TPC
 - 7 Modules design
 - Magnetic field: PCMAG 1.0T
 - Magnetic field: KEK 1.0T

- DESY modules /Micromegas:
 - Size: 220mm × 170mm
 - 1.26mm × 5.85mm/Pad, Saggered
 - 28 pad rows, 4829 channels per module
 - Thin frames – 1mm all around

- KEK modules /GEM:
 - Size: 220mm × 170mm
 - 1.2mm × 5.4mm/Pad, Staggered
 - 28 pad rows (176-192 pads/row)
 - 5152 pad per module
 - 10mm wide frame3 at top/bottom
 - No frames at sides
Backgrounds @CEPC

- **Beamstrahlung (e+e- pairs)**
 - Pair production
 - Hadronic background

- **Lost Particles (Beam Halo)**
 - Radiative Bhabha
 - Beamstrahlung
 - Beam-Gas Scattering
 - ...

- **Synchrotron Radiation**
 - More than 100keV of Gamma (No damage or effect for working gas)
 - Just consider at endcap (readout and modules for TPC)

Hit density ~1 hits cm\(^{-2}\) BX\(^{-1}\)
(Preliminary from Qing Lei)
Beam structure of CEPC

- In the case of ILD-TPC
 - Bunch-train structure of the ILC beam (one ~1ms train every 200 ms)
 - Bunches time ~554ns
 - Duration of train ~0.73ms
 - Used Gating device
 - Open to close time of Gating: 50µs + 0.73ms
 - Shorter working time

- In the case of CEPC-TPC
 - Bunch-train structure of the CEPC beam
 - Pretzel scheme: 3.63µs, 48 bunches/beam
 - Local double ring scheme: 48 bunches/trains, 196ns bunch spacing, 9.4us/182us
 - No Gating device with open and close time
 - Continuous device for ions
MDI design for TPC

- Calibration for the distortion
 - Complex MDI design
 - Short L*
 - QD0, LumiCal will inside in the drift length
 - E field distortion in drift length
 - B field distortion in drift length
 - $E \times B$ effect
 - UV Laser alignment and calibration for readout module, pad, PCB and assembled

Overview of the MDI Design@ CEPC

Obvious E/B distortion!
Current R&D activities
Detector baseline design

- TPC detector
 - Detector module
 - Drift chamber
 - Electronics
 - Working gas supply

- Simulation base on ILC design
 - Change Half Z@1.805m outer radius
 - Change outer radius@2.35m Half Z
 - Inner radius of 329 mm
 - Pad size: 1mm × 6mm
 - Number of tracker:~200
 - B = 3.5 Tesla
 - With multiple scattering and smearing

Overview of ILD TPC

Momentum resolution VS Length, Radius (Preliminary from Li Bo)
Simulation: Ion back flow

In the case of ILD-TPC

- Distortions by the primary ions at ILD are negligible
- Ions from the amplification will be concentrated in discs of about 1 cm thickness near the readout, and then drift back into the drift volume. Shorter working time
- 3 discs co-exist and distorted the path of seed electron
- The ions have to be neutralized during the 200 ms period used gating system

In the case of CEPC-TPC

- Distortions by the primary ions at CEPC are negligible too
- 300 discs co-exist and distorted the path of seed electron
- The ions have to be neutralized during the ~4us period continuously
Occupancy Simu.@250GeV CEPC

- Voxel occupancy
 - Very important parameter of TPC could determine to use or NOT as the tracker detector
 - No consideration for the beam collimator and synchrotron radiation, the value might larger

TPC voxel occupancy simulated in TPC radius
Simulation of occupancy

- **Occupancy@250GeV**
 - Very important parameter for TPC
 - Detector structure of the ILD-TPC like
 - ADC sampling 40MHz readout
 - Time structure of beam: 4us/Branch
 - Beam Induced Backgrounds at CEPC@250GeV (Beam halo muon/e+e-pairs) + γγ→ hadrons with safe factors (×15)
 - Value of the occupancy inner radius smaller
 - Optimization for the pad size in rΦ

Simulation of background

- **1×6mm² Pads**
 - CLIC_ILD ~30%@3TeV
- **1×1mm² Pads**
 - CLIC_ILD ~12%@3TeV

NO TPC Options!

Supported by 高能所创新基金
New ideas for the ions?

- GEM detector could be as the amplification detector, Micromegas could be as the amplification device too.

- GEM detector could be reduced the IBF as the gating, Micromegas could be decrease the IBF too.

- GEM+Micromegas detector module
 - GEM as the preamplifier device
 - GEM as the device to reduce the ion back flow continuously
 - Stable operation in long time
Hybrid structure module option

Measurement method: X-ray and particles track in the module
Hybrid detector measurement

Photos of the measurement with X-tube
Hybrid structure module

- Optimized operating voltage
 - To achieve the higher electron transmission in the hybrid structure module
 - The ratio of $E_{\text{avalanche}}$ and E_{transfer} of Micromegas detector is 216.8
 - The ratio of E_{transfer} and E_{drift} of GEM detector is 67.08

Electron transmission in GEM and Micromegas
Gain and energy resolution

- Test with Fe-55 X-ray radiation source
 - Reach to the higher gain than standard Micromegas with the pre-amplification GEM detector
 - Similar Energy resolution as the standard Micromegas
 - Increase the operating voltage of GEM detector to enlarge the whole gain
Working gas and duration time

- Test with Fe-55 X-ray radiation source
 - Discharge possibility could be mostly reduced than the standard Bulk-Micromegas
 - Discharge possibility of hybrid detector could be used at Gain~10000
 - To reduce the discharge probability more obvious than standard Micromegas
 - At higher gain, the module could keep the longer working time in stable
IBF preliminary result

- Test with X-tube@21kV~25kV using the Hybrid module
 - Charge sensitive preamplifier ORTEC 142IH
 - Amplifier ORTEC 572 A
 - MCA of ORTEC ASPEC 927
 - Mesh Readout
 - Gas: Ar-iC4H10(95-5)
 - Gain: ~6000

Graph: Preliminary from April measurements
Laser calibration system for TPC modules

- Principle of laser for TPC detector
 - The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities
- To reduce the distortion effect
 - \(E \times B \) effect study
 - Drift Velocity measurement
- Laser features for TPC
 - \(\lambda = 266 \text{ nm} \) or \(E = h\nu = 4.66 \text{ eV} \)
 - Energy: \(\sim 100 \text{ uJ/pulse} \)
 - Duration of pulse: 5 ns
- Advantages
 - Transportable and flexible test beam setup
 - Good resolution in space and time
 - No production of \(\sigma \)-rays
 - No multiple scattering
 - No curvature in magnetic fields
 - Ionisation density controllable and small fluctuation
 - Simple beam reflection similar to light

Supported by the State Key Program of National Natural Science of China
First step: study on the laser and design prototype

- Laser transmissive window material@266nm
 - Nano SG120-20 Laser machine
 - Windows materials: Mylar foil, Kapton, PE plastic, Artificial sapphire (Al₂O₃), Fused silica
 - Fused silica (JS2): light transmittance 80%~90%
 - Working gas with fused silica windows: Ar+CO₂, light transmittance 80%~90%

- Design and test
 - Design and setup the prototype with the fused silica windows
 - Measurement the GEM modules using 266nm laser

Supported by the State Key Program of National Natural Science of China

266nm Laser test photos
Common efforts on IBF R&D

Collaboration for the future electron-positron colliders:
CEA Scalay (France)
IHEP, Tsinghua Univ., CIAE, Shandong Univ.,
Lanzhou Univ., UCAS (China)

Targets:
- Simulation and optimize the Hybrid modules of TPC with the active area of 100mm2 ~ 200mm2
- R&D of IBF used UV light
 - Goal: ~0.1% IBF, Resistive Micromegas modules, Hybrid modules
- Assembled Bulk Micromegas detector
- Toward CEPC CDR
- ...
Common efforts on Laser calibration R&D

Collaboration for the future electron-positron colliders:
Tsinghua University, Beijing
IHEP, Beijing

Targets:
- Simulation and optimize the calibration methods and the TPC detector for CEPC
- Laser optical design
 - Wave length: 266nm, Optical power: ~15mJ, independent optical tracks
- TPC Prototype design with Laser calibration
 - Readout active area: ~200mm², Drift length: ~500mm
 - Position resolution: ~100um, Calibration for Drift velocity. Stability tests
- ASIC electronic readout
 - Goal: ~32Chs/CHIP, Channels: ~1K

LI Yulan (THU)
DENG Zhi (THU)
QI Huirong (IHEP)
Summary and outlook

- Baseline design for the preCDR with an ILD-like structure
- Critical requirements for CEPC
 - Beam structure
 - Obvious distortion
 - Complex MDI design
- Some activities and simulations
 - Simulation of the occupancy of the detector, the hybrid structure gaseous detector’s IBF
 - Hybrid structure detector
 - Some preliminary IBF results
 - Design and test of the detector prototype for the laser calibration

- The international workshop of the CEPC TPC detector will be scheduled in September, 2016.
- And next development…
Towards CEPC TPC CDR– Considerations

- **Optimization of working gas:**
 - Fast velocity at low drift electron field
 - Small attachment coefficient
 - Low transverse and longitudinal diffusion

- **IBF Detector Module:**
 - Continuous device reduced ions feedback
 - Working stable in the longer time

- **Alignment and Calibration:**
 - Alignment of module, pad, readout, etc.
 - Calibration of drift velocity, E/B effect, etc.
 - UV laser option

- **Estimation at High counting rate:**
 - High events rate, even Z pole
 - High counting rate and multi-track
Thanks very much for your attention!