Design of a Data Acquisition Module Based on PXI for Waveform Digitization

Zhe Cao
State Key Laboratory of Particle Detection and Electronics
May 25th, 2017
Beijing International Convention Center
Outline

Waveform digitization in physics experiment

Description of the module

Performance of the system

Summary and Prospect
Waveform digitization

- **SCA**
 - Switch Capacitor Arrays
 - High resolution ADC

- **Experiments**
 - ANTARES
 - AMANDA
 - H.E.S.S-II
 - MAGIC-II
 - Etc.

- **ADC**
 - High speed & high resolution ADC

- **Experiments**
 - DANCE
 - TAC
 - GTAF
 - Darkside
 - LUX
 - XENON
 - PANDAX IV
 - Etc.
PandaX-4T

- Particle and Astrophysical Xenon Experiments
 - China Jinping underground laboratory
 - Dark matter direction detection
 - 4-ton Double phase Xenon TPC

- Principle verification
 - Waveform digitization
 - Trigger mode
 - Data buffer & storage

2017-5-25
State Key Laboratory of Particle Detection and Electronics
ADC & EPLD

- **ADC12D1800**
 - TI co.
 - folding interpolating
 - 2 ch.
 - 12 bits
 - Up to 1.8 GSPS

- **Artix7**
 - Config, control & status
 - Buffer & storage
 - Find triggered data
 - -100us to +∞

- **MAX II**
 - PXI interface
 - Module reuse
 - DMA transfer
Clock & trigger

• **Clock**
 - Local or external
 \[SNR = -20 \log(2\pi f_{in} t_{jitter}) \]
 - PLL
 - Low frequency to high frequency
 - RMS jitter = 139fs

• **Trigger**
 - External
 - Discriminator
 - Internal
 - Star trigger from slot2
 - Self
 - Software
Virtual instrumentation

- **Benefit of test, measurement, automation**
 - Powerful application software
 - Cost-effective hardware
- **LabVIEW**
 - Configuration: ADC, PLL, FPGA
 - Channel: up to 4 ch.
 - Trigger: external or channel, trigger level, trigger delay
 - Operation mode: run, single
 - Sample depth (horizontal): up to 50 us
 - Display (vertical): amplitude, offset
GUI

Horizontal set

Vertical set

Channel config

Trigger config

2017-5-25
System test

- **Performance test**
 - Frequency response
 - ENOB
- **Detector test**
 - BaF$_2$ with PMT
- **Test equipment**
 - PXI platform
 - Adlink PXIS-3320 with controller: 15-slot, 6U
 - Oscilloscope
 - Lecroy 715Zi: 20GSPS, 8bits, 1.5GHz
 - Lecroy HDO6104: 2.5GSPS, 12bits, 1GHz
 - Vector signal generator
 - R&S SMA100A: 9kHz~6GHz
 - Bandpass filter
 - A series of filter from 2.4MHz~798MHz
Balun module for test

- **Single end to differential**
 - From generator or detector to module

- **ADT2-1T**
 - Conventional
 - Insertion loss: 0.4~450MHz@3dB

- **ADTL-18**
 - Transmission line
 - Insertion loss: 30~1800MHz@3dB
Frequency response test

2017-5-25
State Key Laboratory of Particle Detection and Electronics
Result@1.8GSPS

The frequency figure of the ADC ch. I

The frequency figure of the ADC ch. Q
ENOB test

\[SINAD = 20 \log \left(\frac{RMS_{\text{signal}}}{RMS_{\text{(noise+distortion)}}} \right) \]

\[ENOB = \frac{SINAD - 1.76 \, \text{dB}}{6.02} \]

- IEEE STD 1241-2000
Result@1.8GSPS

The ENOB figure of the ADC ch. I

The ENOB figure of the ADC ch. Q
BaF₂ with PMT
Result vs. oscilloscope

Acquired by the module

Acquired by oscilloscope
Next & Acknowledgment

- **Next**
 - Test with TPC
 - Extract T & Q
 - Improve data transmission bandwidth

- **Supported by**
 - National Natural Science Foundation of China (Grant No. 11505182).
 - Anhui Provincial Natural Science Foundation (Grant No. 1608085QA21).
MAHALO!