Central exclusive production of J/ψ and $\psi(2S)$ mesons in pp collisions at $\sqrt{s} = 13$ TeV

Liupan An
On behalf of the LHCb collaboration
Tsinghua University

QWG 2017, Nov 9th 2017 @ Beijing, China
Introduction

Central exclusive production: \(p + p \rightarrow p + X + p \)

- Clean final state with low event multiplicity
- \(X \) well isolated in rapidity
- Provides essential QCD information

\(J/\psi \) and \(\psi(2S) \) in CEP are produced through the fusion of a photon and a pomeron (a colorless strongly-coupled object), and can provide
 - A test of QCD
 - An investigation of the nature of the pomeron
 - A means for constraining the gluon parton distribution function
CEP at LHCb

- LHCb is a single-arm forward region spectrometer covering $2 < \eta < 5$
 - Rapidity range complementary to other experiments
 - Dedicated CEP trigger lines
 - Low pile-up environment
 - VELO has backward coverage
 $-3.5 < \eta < -1.5$

- HERSCHEL: new high rapidity shower counters in RunII;
 \eta coverage largely increased! Can reduce non-CEP backgrounds powerfully

VELO & Herschel: $-10 < \eta < -5, -3.5 < \eta < -1.5, 1.5 < \eta < 10$
Dataset and selections

- Measurement performed using 204 pb\(^{-1}\) data at \(\sqrt{s} = 13\) TeV

- Trigger requirements
 - **Hardware**: less than 30 deposits in the scintillating-pad (SPD); at least one muon with \(p_T > 200\) MeV/c
 - **Software**: < 10 reconstructed tracks; at least one muon

- Event selection
 - Two muons with \(2 < \eta < 4.5\)
 - \(M(\mu^+\mu^-) \in M(\psi) \pm 65\) MeV/c\(^2\)
 - \(p_T^2(\mu^+\mu^-) < 0.8\) (GeV/c)\(^2\)
 - Events with
 1) additional VELO tracks or
 2) neutral energy > 200 MeV or
 3) significant deposits in HERSCHEL (\(\Sigma_H\): sum of normalized signals in each channel) are removed

Without \(M(\mu^+\mu^-)\) cut
Cross-section calculation

- Differential cross-sections in bins of rapidity are measured.
- Master relation

\[\frac{d\sigma_{\psi \rightarrow \mu^+\mu^-}}{dy} \left(2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5 \right) = \frac{pN}{\varepsilon_{\text{rec}}\varepsilon_{\text{sel}}\Delta y\varepsilon_{\text{single}}L} \]

- \(p \): signal purity
- \(N \): number of selected events
- \(\varepsilon_{\text{rec}/\text{sel}} \): reconstruction/selection efficiency
- \(\Delta y \): width of the rapidity bin
- \(L \): integrated luminosity
- \(\varepsilon_{\text{single}} = \mu e^{-\mu} \): fraction of single interaction beam-crossings, assuming number of visible pp interactions follows Poisson distribution
 \[P(n) = \frac{\mu^n e^{-\mu}}{n!} \]
Signal purity p

Remaining background sources

1) Non-resonant dimuon: fit to $M(\mu^+ \mu^-)$ distribution

2) Feed-down of CEP χ_c or $\psi(2S)$ to J/ψ
 - $\psi(2S)$: determined using simulated events normalized to $\psi(2S) \rightarrow \mu^+ \mu^-$ signal in data
 - χ_c: determined using calibration sample reconstructed with $J/\psi + \gamma$, scaled by the ratio of J/ψ to $J/\psi + \gamma$ in the simulated χ_c sample

3) Non-exclusive events where remnants are undetected

[CERN-LHCb-CONF-2016-007]
Utilization of HERSCHEL

- Good discrimination between CEP and non-CEP candidates

- Background level roughly halved compared to RunI analysis

[CERN-LHCb-CONF-2016-007]
Efficiencies ε_{rec} and ε_{sel}

- **Reconstruction efficiency ε_{rec}**
 - Product of trigger, tracking and muon identification efficiency
 - Each determined from simulation and calibrated using data

- **Selection efficiency ε_{sel}**
 - $M(\mu^+ \mu^-)$ cut: fit to $M(\mu^+ \mu^-)$ distribution
 - $p_T^2(\mu^+ \mu^-)$ cut: fit to $p_T^2(\mu^+ \mu^-)$ distribution

- **Veto** on VELO, HERSCHEL or photon activity: fit to $p_T^2(\mu^+ \mu^-)$ distribution of non-resonant data sample with/without the cut

[CERN-LHCb-CONF-2016-007]

LHCb Preliminary

Signal
Background

J/ψ
Systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>J/ψ analysis uncertainty (%)</th>
<th>$\psi(2S)$ analysis uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton dissociation</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Non-resonant background</td>
<td>0.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Feed-down background</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>Mass-window</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>HERSCHEL Veto</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Total excluding luminosity</td>
<td>5.9</td>
<td>6.1</td>
</tr>
</tbody>
</table>

- **Proton dissociation:**
 Uncertainty due to imperfect modelling in the fit to $p_T^2 (\mu^+ \mu^-)$; determined using alternative models

- **Tracking efficiency:**
 Uncertainty due to variation of efficiencies determined from the calibration data sample

[CERN-LHCB-CONF-2016-007]
Cross-sections

- Total cross-sections
 $\sigma_{J/\psi \rightarrow \mu^+ \mu^-} \left(2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5\right) = 407 \pm 8{\text{(stat)}} \pm 24{\text{(syst)}} \pm 16{\text{(lumi)}} \text{ pb}$
 $\sigma_{\psi(2S) \rightarrow \mu^+ \mu^-} \left(2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5\right) = 9.4 \pm 0.9{\text{(stat)}} \pm 0.6{\text{(syst)}} \pm 0.4{\text{(lumi)}} \text{ pb}$

- Differential cross-sections with respect to rapidity
 ✓ Better agreement with JMRT NLO predictions

[CERN-LHCb-CONF-2016-007]

[JHEP 11 (2013) 085]

Relation with the photo-production cross-section $\sigma_{\gamma p \rightarrow \psi p}$

$$\sigma_{pp \rightarrow pXp} = r(W_+)k_+ \frac{dn}{dk_+} \sigma_{\gamma p \rightarrow \psi p}(W^+) + r(W_-)k_- \frac{dn}{dk_-} \sigma_{\gamma p \rightarrow \psi p}(W^-)$$

- $r(W_{\pm})$: gap survival factor; taken from previous studies
- k_{\pm}: photon energy, $= m_\psi / 2 \times e^{\pm |\gamma|}$
- $\frac{dn}{dk_{\pm}}$: photon flux; taken from previous studies
- W_{\pm}: center-of-mass energy of the photon-proton system;

$$W_{\pm} = \sqrt{m_\psi \times e^{\pm |\gamma|} \times \sqrt{s}}$$

can explore $W = 2$ TeV with $\sqrt{s} = 13$ TeV data collected by LHCb; the highest energy so far!
Photo-production cross-section (cont.)

J/ψ production:
- In agreement with 7 TeV results where they overlap
- Reach extended to $W \sim 2$ TeV
- Deviation from the power-law fit to H1 data at highest energies
- Good agreement with JMRT NLO prediction

$\psi(2S)$ production:
- Good agreement with H1 data extrapolation, which is scaled from the J/ψ power-law fit
- Larger statistics needed

References:
- [JHEP 11 (2013) 085]
- [CERN-LHCb-CONF-2016-007]
Summary

- Central exclusive J/ψ and $\psi(2S)$ production at $\sqrt{s} = 13$ TeV measured using data collected by LHCb
 - Low background level shows good performance of HERSCHEL
 - Both J/ψ and $\psi(2S)$ show better agreement with JMRT NLO prediction
 - The photo-production cross-section of J/ψ shows deviation from power-law extrapolation of HERA data
 - More data is needed to make a critical comparison for $\psi(2S)$

Thank you!
Backup
The LHCb detector

- A single-arm forward region spectrometer covering $2 < \eta < 5$

- **Vertex Locator:** $\sigma_{PV,x/y} \sim 10 \mu m, \sigma_{PV,z} \sim 60 \mu m$
- **Tracking (TT, T1-T3):** $\Delta p/p = 0.5 - 0.6\%$ for $5 < p < 100 \text{ GeV}/c$
- **RICHs:** $\varepsilon(K \to K) \sim 95\%$ @ misID rate $(\pi \to K) \sim 5\%$
- **Muon system (M1-M5):** $\varepsilon(\mu \to \mu) \sim 97\%$ @ misID rate $(\pi \to \mu) \sim 1 - 3\%$
- **ECAL:** $\sigma_E/E \sim 10\% / \sqrt{E} \otimes 1\%$ (E in GeV)
- **HCAL:** $\sigma_E/E \sim 70\% / \sqrt{E} \otimes 10\%$ (E in GeV)

[JINST 3 (2008) S08005]
VELO&Herschel: $-10 < \eta < -5$, $-3.5 < \eta < -1.5$, $1.5 < \eta < 10$
HepData record

- Record of J/ψ and $\psi(2S)$ in CEP at $\sqrt{s} = 7$ TeV:
 http://dx.doi.org/10.17182/hepdata.66883

- Record of J/ψ and $\psi(2S)$ in CEP at $\sqrt{s} = 13$ TeV will be available when the paper is published