Status of Measurement of R Value at BESIII

Wenbiao Yan

On behalf of BESIII Collaboration
The Born cross section of e^+e^- annihilation into hadrons normalized by theoretical $\mu^+\mu^-$ cross section

\[
R = \frac{\sigma_{h,\text{had}}^0(e^+e^- \rightarrow \gamma^* \rightarrow \text{hadrons})}{\sigma_{\mu\mu}^0(e^+e^- \rightarrow \gamma^* \rightarrow \mu^+\mu^-)}
\]

Precision !!!
Muon magnetic moment \((g-2)_\mu\)

- The Standard Model prediction for muon \(a_\mu = (g_\mu - 2)/2\)

\[
a_\mu^{SM} = a_\mu^{QED} + a_\mu^{had,LO} + a_\mu^{had,HO} + a_\mu^{had,LBL} + a_\mu^{\text{weak}}
\]

\[
a_\mu^{Had}[LO] = \frac{1}{3} \left(\frac{\alpha}{\pi} \right)^2 \int_{m_\pi^2}^{\infty} ds \frac{K(s)}{s} R(s)
\]

Prof. Michel Davier @ Tau2016

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED</td>
<td>11658471.885</td>
<td>± 0.004</td>
</tr>
<tr>
<td>EW</td>
<td>15.4</td>
<td>± 0.1</td>
</tr>
<tr>
<td>had LBL</td>
<td>10.5</td>
<td>± 2.6</td>
</tr>
<tr>
<td>had LO</td>
<td>692.8</td>
<td>± 3.3</td>
</tr>
<tr>
<td>had NLO</td>
<td>-9.87</td>
<td>± 0.09</td>
</tr>
<tr>
<td>had NNLO</td>
<td>1.24</td>
<td>± 0.01</td>
</tr>
<tr>
<td>prediction</td>
<td>11659181.9</td>
<td>± 4.2</td>
</tr>
<tr>
<td>exp BNL</td>
<td>11659208.9</td>
<td>± 6.3</td>
</tr>
</tbody>
</table>

K(s): analytically known
Muon magnetic moment \((g-2)_\mu\)

Prof. Michel Davier at Tau2016

- \([\pi^0\gamma-1.8\text{GeV}]\)
 - sum about 22→37 exclusive channels
 - estimate unmeasured channels using isospin relations

- \([1.8-3.7] \text{ GeV}\)
 - good agreement between data and pQCD calculation;
 previous extensive QCD tests with \(\tau\) data
 → use 4-loop pQCD
 - \(J/\psi, \psi(2S)\): Breit-Wigner integrals

- \([3.7-5] \text{ GeV}\)
 - charm particle thresholds
 → use data

- \(>5\text{ GeV}\)
 - use 4-loop pQCD calculation

- **BESIII**: ISR and energy scan
EM fine structure constant

- The running of the electromagnetic fine structure constant is governed by the renormalized vacuum polarization function.

\[
\alpha(s) = \frac{\alpha(0)}{1 - \Delta\alpha_{lep}(s) - \Delta\alpha_{top}(s) - \Delta\alpha_{had}^5(s)}
\]

\[
\Delta\alpha_{lep}(M_Z^2) = 0.03142
\]

\[
\Delta\alpha_{top}(M_Z^2) = 0.00007(1)
\]

\[
\Delta\alpha_{had}^5(M_Z^2) = 0.0280 \pm 0.0009
\]

\[
\Delta\alpha_{had}^5(M_Z^2) = -\frac{\alpha(0)M_Z^2}{3\pi} \operatorname{Re} \int_{4m_{\pi}^2}^{\infty} ds \frac{R(s)}{s(s - M_Z^2) - i\epsilon}
\]
R value @ pQCD and charmonium

- Test pQCD prediction on R values

\[
 R = 3 \sum_f Q_f^2 \left[1 + \left(\frac{\alpha_s(s)}{\pi} \right) + 1.411 \left(\frac{\alpha_s(s)}{\pi} \right)^2 - 12.8 \left(\frac{\alpha_s(s)}{\pi} \right)^3 + \ldots \right]
\]

- Fitting to R values: resonance parameters of \(\Psi(3770) \), \(\Psi(4040) \), \(\Psi(4160) \) and \(\Psi(4410) \).

\[\psi(4040) \quad I^{G(j\bar{p}C)} = 0^- (1^- -)\]

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4039 ± 1</td>
<td>0B0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4039 ± 6</td>
<td>0D0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4037 ± 2</td>
<td>0D0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4040 ± 1</td>
<td>0E0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4040 ± 10</td>
<td>0F0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PL B660 (2008) 315

\[\chi^2/d.o.f=1.06\]
Data sets for R value

● Phase I: test run @ 2012
 ✓ Ecm = 2.232/2.400/2.800/3.400 GeV, ~12pb⁻¹

● Phase II: fine scan for heavy charm resonant @2013-2014
 ✓ Ecm ∈ [3.800, 4.590]GeV, 104 energy points, ~800pb⁻¹

● Phase III: R & QCD scan @ 2015
 ✓ Ecm ∈ [2.000, 3.080]GeV, 21 energy points, ~500pb⁻¹
R value

- R values are measured as

\[
R = \frac{1}{\sigma_{\mu^+\mu^-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}
\]

\[
\text{L} \quad \text{integrated luminosity}
\]
\[
1+\delta \quad \text{radiative correction factor}
\]
\[
N_{had} \quad \text{observed hadronic events}
\]
\[
N_{bg} \quad \text{from background events}
\]
\[
\varepsilon_{had} \quad \text{selection efficiency}
\]
\[
\sigma_{\mu\mu} \quad \text{Born cross section of } \mu \text{ pair production in QED}
\]
Generators @ R analysis

\[e^+e^- \rightarrow (\gamma)e^+e^-: \text{Babayaga} \]

\[e^+e^- \rightarrow (\gamma)\mu^+\mu^-: \text{Babayaga} \]

\[e^+e^- \rightarrow (\gamma)\tau^+\tau^-: \text{KKMC} \]

\[e^+e^- \rightarrow (\gamma)\gamma\gamma: \text{Babayaga} \]

\[e^+e^- \rightarrow \text{hadrons}: \text{ConExc & LUARLW} \]

\[e^+e^- \rightarrow e^+e^-X: \text{TWOPHOTON} \]
Luminosity

• Large-angle Bhabha $e^+e^- \rightarrow (\gamma)e^+e^-$ and diphoton $e^+e^- \rightarrow (\gamma)\gamma\gamma$: about 0.8% uncertainty

\begin{table}
\begin{tabular}{|c|c|c|}
\hline
\sqrt{s}/GeV & $e^+e^- \rightarrow (\gamma)e^+e^-$/pb$^{-1}$ & $e^+e^- \rightarrow (\gamma)\gamma\gamma$/pb$^{-1}$ \\
\hline
2.2324 & 2.645\pm0.006\pm0.020 & 2.627\pm0.009\pm0.028 \\
2.4000 & 3.415\pm0.007\pm0.024 & 3.428\pm0.011\pm0.040 \\
2.8000 & 3.753\pm0.008\pm0.026 & 3.766\pm0.014\pm0.042 \\
3.0500 & 14.893\pm0.030\pm0.103 & 14.919\pm0.029\pm0.158 \\
3.0600 & 15.040\pm0.030\pm0.131 & 15.060\pm0.029\pm0.158 \\
3.0800 & 31.019\pm0.060\pm0.189 & 30.942\pm0.044\pm0.338 \\
3.0830 & 4.740\pm0.011\pm0.029 & 4.769\pm0.017\pm0.052 \\
3.0900 & 15.709\pm0.031\pm0.099 & 15.558\pm0.030\pm0.162 \\
3.0930 & \cdots & 14.910\pm0.030\pm0.157 \\
3.0943 & \cdots & 2.143\pm0.011\pm0.023 \\
3.0952 & \cdots & 1.816\pm0.010\pm0.019 \\
3.0958 & \cdots & 2.135\pm0.011\pm0.023 \\
3.0969 & \cdots & 2.069\pm0.011\pm0.024 \\
3.0982 & \cdots & 2.203\pm0.011\pm0.023 \\
3.0990 & \cdots & 0.756\pm0.007\pm0.008 \\
\hline
\end{tabular}
\end{table}
Radiative correction factor \((1+\delta)\)

- The Feynman diagrams scheme (CB) and structure function schemes (KF & WU) are used, results by their methods are consistent within \(1.2\%\).

- \(R\) value @ PDG2016 as input
\[e^+e^- \rightarrow e^+e^- + X \]

- **Background from two photon process**
 - Underestimation by BesTwoGam MC
 - Use generator for (dominant) exclusive processes: \(e^+e^-e^+e^-; e^+e^-\mu^+\mu^-; e^+e^-\pi^+\pi^-; e^+e^-K^+K^-; e^+e^-\eta \) and \(e^+e^-\eta' \)
- **Other process:** unclear but tiny
MC generator for $e^+e^-\rightarrow$hadrons

- High energy e^+e^- collision: Herwig @ Cluster model; Jetset and Pythia @ String model
- Low energy e^+e^- collision: LUND Area Law, hep-ph/9910285
 - Simulate ISR inclusive continuous channels and $J^{PC}=1^-$ resonance between 2GeV and 5GeV. Need MC tuning
 - Left-right symmetry, NO
MC generator for $e^+e^-\rightarrow$ hadrons

- LUARLW: 100% by LUARLW
- ConExc generator:
 - ConExc + Phokhara + LUARLW
 - Phokhara deal with 10 exclusive processes
 - Others measured processes with ConExc
 - unknown by LUNDARLW

![Graph showing cross section vs. $M_{hadrons}$ (GeV)]

- +: inclusively light hadron
- --: exclusive measured cross section
ConExc @ [2.232, 3.671]GeV

ConExc could describe experimental data
LUARLW could describe experimental data
Status of R Measurement

- BESIII memo at Convener’s review

BESIII Analysis Memo
BAM-00XXX
June 13, 2017

The Measurements of R in e^+e^- Annihilation at Center-of-Mass Energy from 2.2324 to 3.6710 GeV at BESIII

- MC tuning at $[3.800, 4.590]$GeV

\[
e^{+}e^{-} \Rightarrow \gamma^* \Rightarrow \begin{cases}
\psi(4040) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s; \\
\psi(4160) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s; \\
\psi(4415) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s, D_s^*\bar{D}_s^*;
\end{cases}
\]

\[
e^{+}e^{-} \Rightarrow \gamma^* \Rightarrow X(4160), X(4260) \cdots \text{ with } J^{PC} = 1^{-+}
\]
Summary

- R values are important for \((g-2)_\mu\), \(\alpha(M_Z)\), \(\alpha_s(s)\), and test pQCD prediction, and resonance parameters of charmonium states
- BESIII have collected with R scan data @ \([2.0, 4.6]GeV\)
- Data analysis @ \([2.232, 3.671]GeV\) is finished
 - Integrated luminosity: about 0.8% uncertainty
 - Radiative correction factor \((1+\delta)\): 1.2% uncertainty
 - MC generator: ConExc and LUARLW
- Data analysis @ \([3.800, 4.590]GeV\) is in progress
Bird’s View of BEPCII & BESIII

- BEPC-II and BES-III
- Linac
- Storage ring
- BESIII detector
- Beijing electron positron collider BEPCII

Beam energy 1.0-2.3 GeV
Energy spread: 5.16×10^{-4}

Design luminosity 1×10^{33}/cm2/s @ $\psi(3770)$
BESIII Detector

- Solenoid Magnet: 1 T Super conducting
- MDC small cell & He gas
 - $\sigma_{xy} = 130 \, \mu m$
 - $\delta p/p = 0.5\% @ 1\, GeV$
 - $dE/dx = 6\%$
- TOF
 - $\sigma_T = 90\, ps$ Barrel
 - 110->80ps Endcap
- Muon ID: 8~9 layer RPC
 - $\sigma_{R\Phi} = 1.4 \, cm \sim 1.7 \, cm$
- EMCAL: CsI crystal
 - $\Delta E/E = 2.5\% \, @ \, 1\, GeV$
 - $\sigma_{\varphi,z} = 0.5\sim 0.7 \, cm/\sqrt{E}$
- Data Acquisition:
 - Event rate = 3 kHz
 - Throughput ~ 50 MB/s
- Trigger: Tracks & Showers
 - Pipelined; Latency = 6.4 μs

Hermetic spectrometer for neutral and charged particle with excellent resolution, PID, and large coverage