CEPC Physics and Detector Conceptual Design Report: Mini-review

Introduction

João Guimarães da Costa
(IHEP, Chinese Academy of Sciences)

Mini-review of the CEPC Physics and Detector CDR
10 November 2017
Conceptual Design Report (CDR) – Status

Pre-CDR completed in 2015

- No show-stoppers
- Technical challenges identified → R&D issues

Detector and Physics - Conceptual Design Report (CDR)

- Goal: A working concept on paper, including alternatives

This week: Draft-0 preliminary chapters available for discussion

- Chapter 3: Detector concepts (partial)
- Chapter 4: Vertex detector
- Chapter 5: Tracking system (TPC, silicon tracker, silicon-only concept, drift chamber)
- Chapter 6: Calorimeter (PFA and DR calorimeter options)
- Chapter 7: Magnet system
- Chapter 8: Muon system
- Chapter 10: MDI, beam background and luminosity measurement
- Chapter 11: Physics performance (partial)

(See: http://cepc.ihep.ac.cn/preCDR/volume.html)
Conceptual Design Report (CDR) – Status

Pre-CDR completed in 2015

- No show-stoppers
- Technical challenges identified → R&D issues

Detector and Physics - Conceptual Design Report (CDR)

- Goal: A working concept on paper, including alternatives

- **Spring 2018: Planned release date**
 - Soon after CEPC accelerator CDR is released

- **From this week’s workshop till publication:**
 - Plenty of opportunities for everyone to contribute
 - Lots of room to make a serious impact

- **Nov 10–11: Informal CDR Mini-review**
 - http://indico.ihep.ac.cn/event/7384/

More definite schedule available towards end of November

[Pre-CDR completed in 2015](http://cepc.ihep.ac.cn/preCDR/volume.html)
Baseline detector for CDR
ILD-like
(similar to pre-CDR)

Low magnetic field concept

Full silicon tracker concept

Final two detectors likely to be a mix and match of different options
Current CDR Status

CEPC

Conceptual Design Report

Volume I - Physics & Detector

The CEPC Study Group

Spring 2018
Outline

Acknowledgments iii

1 Introduction 1
 1.1 The CEPC-SPPC Study Group and the CDR 1
 1.2 The Case for the CEPC-SppC in China 1
 1.3 The Science in the CDR 1
 1.4 The Accelerator and the Experiment 1

2 Overview of the Physics Case for CEPC-SppC 3
 2.1 First theory subsection 3

3 Experimental conditions and detector concepts 5
 3.1 Experimental conditions 5
 3.2 The CEPC detector requirements 6
 3.3 Detector concepts 6
 3.3.1 The baseline concept 6
 3.3.2 An alternative low-field concept 6
Outline

4 Vertex

4.1 Performance Requirements and Detector Challenges
4.2 Baseline design
4.3 Detector performance studies
 4.3.1 Performance of the Baseline Configurations
 4.3.2 Material Budget
 4.3.3 Dependence on Single-Point Resolution
 4.3.4 Distance to IP
4.4 Beam-induced Background in the Vertex Detector
4.5 Sensor Technology Options
4.6 Mechanics and Integration
4.7 Critical R&D
 4.7.1 Current R&D activities
 4.7.2 Future R&D
4.8 Summary
Outline

5 Tracking system

5.1 TPC tracker detector
 - 5.1.1 Baseline design and mechanics
 - 5.1.2 Simulation and estimation for the key issues
 - 5.1.3 Feasibility study of TPC detector module and calibration system
 - 5.1.4 Conclusion

5.2 Silicon tracker detector
 - 5.2.1 Baseline design
 - 5.2.2 Sensor technologies
 - 5.2.3 Front-End electronics
 - 5.2.4 Powering and cooling
 - 5.2.5 Mechanics and integration
 - 5.2.6 Tracking performance
 - 5.2.7 Critical R&D

5.3 Full-silicon tracker detector
 - 5.3.1 Full silicon tracker layout
 - 5.3.2 Toy simulation
 - 5.3.3 Detector simulation and reconstruction
 - 5.3.4 Tracking performance
 - 5.3.5 Conclusion
Outline

5.4 Drift chamber tracker detector
 5.4.1 Introduction
 5.4.2 Physics Requirements and Performance Goal
 5.4.3 Overview
 5.4.4 Mechanical Design
 5.4.5 Cluster Counting/Timing Techniques
 5.4.6 Front-end electronics
 5.4.7 Drift chamber material budget
 5.4.8 Expected performance
 5.4.9 Simulation and Reconstruction
 5.4.10 Predicted Performance
 5.4.11 Conclusion

5.5 Tracking system
 5.5.1 TPC tracker detector
 5.5.1.1 Baseline design and mechanics
 5.5.1.2 Simulation and estimation for the key issues
 5.5.1.3 Feasibility study of TPC detector module and calibration system
 5.5.1.4 Conclusion
 5.5.2 Silicon tracker detector
 5.5.2.1 Baseline design
 5.5.2.2 Sensor technologies
 5.5.2.3 Front-End electronics
 5.5.2.4 Powering and cooling
 5.5.2.5 Mechanics and integration
 5.5.2.6 Tracking performance
 5.5.2.7 Critical R&D
 5.5.3 Full-silicon tracker detector
 5.5.3.1 Full silicon tracker layout
 5.5.3.2 Toy simulation
 5.5.3.3 Detector simulation and reconstruction
 5.5.3.4 Tracking performance
 5.5.3.5 Conclusion
 5.5.4 Drift chamber tracker detector
 5.5.4.1 Introduction
 5.5.4.2 Physics Requirements and Performance Goal
 5.5.4.3 Overview
 5.5.4.4 Mechanical Design
 5.5.4.5 Cluster Counting/Timing Techniques
 5.5.4.6 Front-end electronics
 5.5.4.7 Drift chamber material budget
 5.5.4.8 Expected performance
 5.5.4.9 Simulation and Reconstruction
 5.5.4.10 Predicted Performance
 5.5.4.11 Conclusion

6 Calorimetry
 6.1 Introduction to calorimeters
 6.2 Electromagnetic Calorimeter for Particle Flow Approach
 6.2.1 Silicon-Tungsten Sandwich Electromagnetic Calorimeter
 6.2.2 Scintillator-Tungsten Sandwich Electromagnetic Calorimeter
 6.3 Hadronic Calorimeter for Particle Flow Approach
 6.3.1 Introduction
 6.3.2 Semi-Digital Hadronic Calorimeter (SDHCAL)
Outline

6 Calorimetry

6.1 Introduction to calorimeters
6.2 Electromagnetic Calorimeter for Particle Flow Approach
6.2.1 Silicon-Tungsten Sandwich Electromagnetic Calorimeter
6.2.2 Scintillator-Tungsten Sandwich Electromagnetic Calorimeter
6.3 Hadronic Calorimeter for Particle Flow Approach
6.3.1 Introduction
6.3.2 Semi-Digital Hadronic Calorimeter (SDHCAL)
6.3.3 Analog Hadronic Calorimeter based on Scintillator and SiPM
6.4 Dual-readout Calorimetry
6.4.1 Introduction
6.4.2 Dual-Readout Calorimetry
6.4.3 Layout and Mechanics
6.4.4 DREAM/RD52 Prototype Studies
6.4.5 Sensors and Readout Electronics
6.4.6 Monte Carlo Simulations
6.4.7 Final Remarks
7 Detector magnet system 127

7.1 General Design Considerations 127
7.2 The Magnetic Field Requirements and Design 128
 7.2.1 Main parameters 128
 7.2.2 Magnetic field design 128
 7.2.3 Coil mechanical analysis 129
 7.2.4 Preliminary quench analysis 135
7.3 HTS/LTS Superconductor Options 138
 7.3.1 HTS plan background 138
 7.3.2 The latest development of high temperature superconducting cable 141
 7.3.3 HTS magnetic design 143
 7.3.4 Future work of HTS plan 144
7.4 Solenoid Coil Design 145
 7.4.1 Solenoid Coil Structure 145
 7.4.2 R&D of Superconducting Conductor 146
 7.4.3 Coil fabrication and assembly 147
7.5 Magnet Cryogenics Design 148
 7.5.1 Preliminary Simulation of the Thermosyphon Circuit 148
 7.5.2 Preliminary results for 10:1 scale model 150
 7.5.3 Experiment of a small-sized He thermosiphon 150
 7.5.4 Cryogenic System 154
7.6 Quench Protection and Power supply 154
 7.6.1 power supply 154
 7.6.2 control and safety systems 154
7.7 Iron Yoke Design 155
 7.7.1 The Barrel Yoke 157
 7.7.2 The Endcap Yoke 157
 7.7.3 Yoke assembly 157
7.8 Dual Solenoid Scenario 158
Outline

8 Muon system 161
 8.1 Baseline Design 161
 8.2 The Resistive Plate Chamber technology 163
 8.3 Other technologies 164
 8.3.1 The MDT technology 164
 8.3.2 The Cathode Strip Chamber technology 165
 8.3.3 The Thin Gap Chamber technology 165
 8.3.4 The Micromegas technology 165
 8.3.5 The GEM technology 165
 8.3.6 The Scintillator Strips technology 165
 8.3.7 The μRWell technology 165
 8.4 Future R&D 170

9 Readout electronics and data acquisition 173
 9.1 New Colliders for a New Frontier 174
Outline

10 CEPC interaction region and detector integration 175

10.1 Interaction region layout 175
10.2 Final focusing magnets 176
10.3 Detector backgrounds 177
 10.3.1 Synchrotron radiation 177
 10.3.2 Radiative Bhabha scattering 177
 10.3.3 Beam-beam interactions 178
 10.3.4 Beam-gas interactions 179
 10.3.5 Summary on detector backgrounds 181
10.4 Luminosity instrumentation 181
 10.4.1 Technological and design options 181
10.5 Systematic effects 182
 10.5.1 Summary on LumiCal 184
10.6 Detector integration 185
Outline

11 Physics performance

11.1 Introduction
 11.1.1 The physics requirement and detector design at the CEPC
11.2 Simulation Geometry & Samples
11.3 Arbor Algorithm & Strategy to the object reconstruction
11.4 Leptons
11.5 Kaon Identification
11.6 Photons
11.7 Taus
11.8 Jet-clustering
11.9 Jet flavor tagging
 11.9.1 Base line
 11.9.2 Other machine learning approaches
 11.9.3 Gluon identification
 11.9.4 Conclusion

12 Future plans and R&D prospects

12.1 New Colliders for a New Frontier
Outcome

- **Charge:**
 - Informal discussion on different topics. Feel free to be controversial and provide input in the content, format and text
 - Some chapters clearly more polished than others
 - No need to provide English corrections on text that is clearly incomplete

- **Outcome:**
 - Short summary with comments from individual people
 - No need for a common report
CEPC baseline detector: ILD–like

- Impact parameter resolution: less than 5 μm
- Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV$^{-1}$)
- Jet energy resolution: $\sigma_E/E \sim 0.3/\sqrt{E}$

Magnetic Field: 3 Tesla — changed from preCDR

- Flavor tagging
- BR(Higgs $\rightarrow \mu\mu$)
- W/Z dijet mass separation
Major concerns being addressed

MDI region highly constrained
- L* increased to 2.2 m
- Compensating magnets

TPC as tracker in high-luminosity Z-pole scenario

ECAL/HCAL granularity needs
- Passive versus active cooling

Magnetic Field: 3 Tesla — changed from preCDR

- Impact parameter resolution: less than 5 μm
- Tracking resolution: δ(1/Pt) ~ 2 × 10⁻⁵ (GeV⁻¹)
- Jet energy resolution: σ_E/E ~ 0.3/√E

Flavor tagging
BR(Higgs → μμ)
W/Z dijet mass separation
Low magnetic field detector concept

Proposed by INFN, Italy colleagues

Magnet: 2 Tesla, 2.1 m radius

Thin (~30 cm), low-mass (~0.8 \(X_0\))

Beam pipe: radius 1.5 cm

Vertex: Similar to CEPC default

Drift chamber: 4 m long; Radius ~30-200 cm

Preshower: ~1 \(X_0\)

Dual-readout calorimeter: 2 m/8 \(\lambda_{\text{int}}\)

(yoke) muon chambers

Integrated into Conceptual Design Report

- Dual readout calorimeter: Chapter 6
- Talk: Session IV - Roberto Ferrari
- Drift chamber: Chapter 5
- Talk: Session II - Franco Gancagnolo
- Muon detector (\(\mu\)Rwell): Chapter 8
- Talk: Session IV - Paolo Giacomelli
Full silicon tracker concept

Replace TPC with additional silicon layers

CEPC-SID:
- 6 barrel double strip layers
- 5 endcap double strip layers

SIDB: SiD optimized
- 5 barrel single strip layers
- 5 endcap double strip layers

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)