ATLAS LAr Calorimeter Readout Electronics Upgrade R&D for sLHC

Hucheng Chen
On behalf of the ATLAS Liquid Argon Calorimeter Group
May 11th, 2010
Outline

- **Introduction**
 - ATLAS Liquid Argon Calorimeter
 - Current LAr Readout Electronics
 - LAr Electronics Upgrade Motivations

- **Readout Electronics Upgrade R&D Studies**
 - Front-end mixed-signal ASIC design
 - BNL, Columbia Univ., Univ. of Penn., INFN Milan, IN2P3
 - Radiation tolerant optical link in Silicon-on-Sapphire
 - SMU
 - High speed back-end processing unit based on FPGA
 - BNL, Univ. of Arizona, SUNY Stony Brook, IN2P3 LAPP, INFN Milan, Dresden, CERN
 - Power supply distribution scheme
 - BNL, Yale, INFN Milan, Univ. of Milan

- **Summary**

Liquid Argon Calorimeter

- **Electromagnetic Barrel (EMB)**
 - $|\eta| < 1.475$ [Pb-LAr]
- **Electromagnetic End-cap (EMEC)**
 - $1.375 < |\eta| < 3.2$ [Pb-LAr]
- **Hadronic End-cap (HEC)**
 - $1.5 < |\eta| < 3.2$ [Cu-LAr]
- **Forward Calorimeter (FCAL)**
 - $3.1 < |\eta| < 4.9$ [Cu,W-LAr]
- 182,468 detector channels
- **Front-end Electronics**
 - 58 Front End Crates
 - 1524 Front End Boards
 - ~300 other boards (calibration, tower builder, controller, monitoring)
 - 58 LV Power Supplies
 - ~1600 fiber optic links between FE and BE
- **Back-end Electronics**
 - 16 Back End Crates
 - 192 Read Out Driver Boards
 - 68 ROS PCs
 - ~800 fiber optic links between ROD and ROS
Current Front-end Architecture

- **FEB Complexity**
 - 11 ASICs
 - Several technologies with obsolescence of some technologies (e.g. DMILL)
 - 19 voltage regulators
 - Analog pipelines (SCA)
 - ~80W/board, water cooled

- **Radiation/lifetime issues**
 - Qualified for 10 years LHC operation
 - Limited number of spares (~6%)

- **Other limitations**
 - L1 trigger rate \(\leq 100\text{kHz} \)
 - L1 trigger latency \(\leq 2.5\mu\text{s} \)
 - Consecutive L1 trigger spaced more than 125ns
 - Fixed analog trigger sums

- **FEB Upgrade**
 - Component-level replacement impossible
 - Full replacement based on current technologies
 - No increase of power budget
Proosed Front-end Architecture

- Proposed FEB baseline architecture keeps many options open
 - Shaping and gain settings
 - Analog vs. digital pipeline
 - On/off detector pipeline
 - Analog vs. digital gain selector
 - Possibly provide analog trigger sums to decouple potential trigger upgrade

- FEB upgrade propagates to other boards
 - Digitization at each bunching crossing, data rate is \(~100\text{Gbps/board}\)
 - Higher speed, higher radiation resistance optical link
 - LV power supplies
 - Back-end electronics
 - Possibly interface to L0Calo/L1Calo digitally

No on-detector pipeline
All data streamed off-detector
Analog Front-end R&D

- Quad preamplifier & shaper ASIC in IBM 0.13μm SiGe 8WL

Preamplifier
- Based on low noise line-terminating preamplifier circuit topology used presently
- High breakdown devices allow for higher swing to accommodate full 16-bit dynamic range
- $e_n \sim 0.26\text{nV}/\sqrt{\text{Hz}}$
- ENI $\sim 73\text{nA RMS}$ (included 2nd stage and for $C_d = 1\text{nF}$)
- $P_{\text{tot}} \sim 42\text{mW}$

Shaper
- 16-bit dynamic range with two gain settings
- $e_n \sim 2.4\text{nV}/\sqrt{\text{Hz}}$
- ENI $\sim 34\text{nA RMS}$
- $P_{\text{tot}} \sim 130\text{mW}$ (combined 1X, 10X channels)
- Uniformity: better than 5% across 17 tested ASICs
- INL: $< 0.1\%$ over full scale of 1X and 10X channels
LAPAS testing with hand wired prototype
- All measurements as expected
- DC results very close to simulations, shaper peaking time is 37ns as predicted
- Preamp and shaper transient response is good, no shaper control tuning required
- Common mode auto-tracking is excellent
- No significant concerns about first TID results

New test PCB is available, full characterization is still in progress
Future plan: explore other SiGe technologies (IHP, AMS) and feasibility of CMOS only design
COTS ADC Radiation Test

- ADC is the most technologically challenging component in the new architecture
- COTS ADC radiation test
 - Verify radiation tolerance of commercial ADC
 - Testing of few commercial devices: ADI-AD9259, ST-RHF1201, TI-ADC5821
 - Analysis on-going from data taken under live proton irradiation at Mass. General Hospital
 - Preliminary results
 - ST-RHF1201 suffers dynamic range reduction after ~300 krad
 - ADI-AD9259 draws excess current
 - More radiation test is planned

Reduction in # of ADC values (max 3404)

- ~300 kRad
- ~3 MRad

Nikiforos Nikiforou
Mixed-signal ASIC: ADC Development

- 12-bit pipeline ADC design
 - 1.5 bits/stage with digital error correction
 - Critical component: amplifier in every stage
- Nevis09 chip
 - 12-bit precision OTA in IBM 0.13μm CMOS 8RF
 - Implemented in chip: OTA + cascade of two T/H to achieve S/H effect for testing
- Testing is still on-going, preliminary test results: 65dB
SMU_P1 in 0.25μm Silicon-on-Sapphire consists of the following function blocks:

- LOCs1, a 5Gbps 16:1 serializer
- The LCPLL, a 5GHz LC VCO based PLL
- The CML driver
- A divide-by-16 circuit
- A varactor, a voltage controller capacitor
- An SRAM block

Testing is still on-going, preliminary test results:

- Serializer: range 3.8 to 6.2Gbps, power 507mW, $T_j \sim 62$ps, eye opening $\sim 69\%$ UI at 1e-12
- LCPLL: tuning range 4.7 to 5GHz, power 121mW at 4.9GHz, $R_j < 2.5$ps, $D_j < 17$ps
Radiation Tolerant Optical Link

SMU_P1 in 0.25μm Silicon-on-Sapphire consists of the following function blocks:

- LOCs1, a 5Gbps 16:1 serializer
- The LCPLL, a 5GHz LC VCO based PLL
- The CML driver
- A divide-by-16 circuit
- A varactor, a voltage controller capacitor
- An SRAM block

Testing is still on-going, preliminary test results:

- Serializer: range 3.8 to 6.2Gbps, power 507mW, $T_j \sim 62$ps, eye opening $\sim 69\%$ UI at 1e-12
- LCPLL: tuning range 4.7 to 5GHz, power 121mW at 4.9GHz, $R_j < 2.5$ps, $D_j < 17$ps

See Jingbo’s talk for more details.
Readout Driver (ROD) Upgrade R&D

- Data bandwidth of entire LAr w. 1524 FEBs > 150 Tbps
 - High speed parallel fiber optical transceiver (e.g. 12 fibers @ 10 Gbps)

- ROD R&D
 - Address issues of bandwidth and achievable integration on the ROD
 - ROD based on FPGA high speed SERDES and FPGA based DSP to take advantage of parallel data processing
 - Perform L0/L1 trigger sum digitally after E-conversion with flexible and finer granularity within a realistic latency budget
 - Follow up and explore technology evolution (e.g. FPGA, ATCA)
Sub-ROD and Injector Development

- Sub-ROD and Injector in US
 - ATCA form factor
 - 75Gbps parallel fiber optic links
 - FPGA SERDES: Xilinx Virtex 5 FX on Sub-ROD and Altera Statix II GX on Injector

- Slice integration test
 - SNAP-12 parallel optical transceiver from Emcore and Reflex Photonics
 - BERT from 2.4 to 6.25Gbps per link
 - Used as test stand for latency study

5 Gbps

6.25 Gbps
ROD R&D in ATCA Platform

- **ATCA test board development in LAPP, France**
 - ATCA controller tests: I/O, IPMI management, Ethernet communication
 - ROD demonstrator tests: board configuration, ATCA compliant power supplies, FPGA design
 - Software development based on Linux and GNU GCC
 - IPMI (*Intelligent Platform Management Interface*) Controller for ATCA boards in FMC format provides ATCA ROD board management
 - In development and will be available this summer

- **ATCA ROD test bench in Dresden, Germany**
 - Radisys Promentum ATCA sys-6010 crate with 10GbE and dual star backplane
 - 1 ATCA Sub-ROD from BNL
 - 10GbE Switch with XFP transceiver with 10GbE connection to server PC
 - Installation of ROS software to simulate real data transfer and DAQ system as in ATLAS
 - Investigating 10GbE implementation
 - Test integrated ROD/ROB functionality, also useful for normal ROD tasks and data integrity tests with PC
Radiation Hard Front End Power Supply

- **Present power supply scheme**
 - 380 VAC/3 phases \rightarrow 280 VDC \rightarrow Rad-tolerant DC-DC converters w. 7 voltages \rightarrow 19 regulators on FEB

- **Upgraded power supply system**
 - Radiation environment assumed to scale x10
 - Power budget remains approximately the same
 - Rationalization of the number and levels of the voltages
 - Use of point of load converters

- **Two possible architectures**
 - Distributed power architecture: main DC-DC converter + POL converters
 - Intermediate bus architecture: main DC-DC converter + 2nd bus voltage w. POL converter + LDO regulator

- **Two POL converters tested in FEC for noise evaluation**
 - LTM4602: 6A High Efficiency DC/DC μModule
 - IR3841: Integrated 8A Synchronous Buck Regulator
 - Noise shielding necessary if inside FEC
 - Ready for radiation tests
Summary

- Radiation levels and probably natural aging of the electronics will require an upgrade of the front-end electronics.
- Opportunity to apply modern technology and revise architecture:
 - Continuous data streaming off-detector
 - Fully digital L0/L1 trigger information with flexible granularity, while interface to trigger system will be guided by physics and MC simulation.
- Major challenges:
 - Modern technology requires lower voltages, difficult to maintain the required large dynamic range and stringent noise performance.
 - Critical radiation hard components (analog front-end, ADC, optical link and power supply).
 - Extremely large bandwidth off-detector readout.
 - High performance data handling with very strict latency budget.
- R&D is progressing smoothly:
 - 3 different ASIC/chiplet available, more test results expected soon.
 - Priority for the next 2-3 years to demonstrate the feasibility of the readout architecture in different scales.
LHC Upgrade Expectation

- **LHC upgrade includes 2 phases**
 - sLHC (phase 2 upgrade) expected to start up ~2020
 - ATLAS LAr calorimeter plans for LHC phase 2 upgrade

- **New requirements to LAr calorimeter readout electronics**
 - Radiation environment assumed to scale x10
 - Total power consumption kept same
New Readout Challenges at sLHC

- Radiation hardness: 10 times more radiation
- Dynamic Range
 - EM: from 50 MeV to 3 TeV (10 mA): 16 bits
 - HEC: up to 1 TeV (0.3 mA)
- Relative energy resolution: $\frac{\sigma_E}{E} \sim 10\%/\sqrt{E} \oplus 0.7\%$
- Electronic calibration: < 0.25%
- Fast shaping to optimize signal/noise ratio
 - Up to 20 times more pile-up events
 - Optimal hardware shaping time scales as $L^{-1/4}$, $t_p(D) \sim 28\text{ns} @10^{35}$
- Digital filtering signal reconstruction: To adapt to changing LHC luminosity
- Minimal coherent pickup noise: < 5% of incoherent noise
- Data to be used for both DAQ and L0/L1 trigger
- Same power consumption

<table>
<thead>
<tr>
<th>Radiation tolerance criteria of the LAr electronics at sLHC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASICs</td>
</tr>
<tr>
<td>TID (kGy)</td>
</tr>
<tr>
<td>NIEL (n/cm2)</td>
</tr>
<tr>
<td>SEE (p/cm2)</td>
</tr>
</tbody>
</table>