SNOWMASS ENERGY FRONTIER WORKSHOP

June 30 - July 3, University of Washington, Seattle

Top physics in e⁺e⁻ collisions at CLIC

Sophie Redford
CERN
on behalf of the CLIC Detector and Physics Study

SNOWMASS ENERGY FRONTIER WORKSHOP

June 30 - July 3, University of Washington, Seattle

- I. Top quark mass
 - $\sqrt{s} = 350 \text{ GeV threshold scan}$
 - $\sqrt{s} = 500 \text{ GeV}$ invariant mass measurement
- Established analysis arxiv:1303.3768v1 submitted to EPJC

- 2. Top Yukawa coupling
 - $\sqrt{s} = 1.4 \text{ TeV ttH cross section measurement}$
- New analysis preliminary result

- 3. Top as a probe for new physics
 - $\sqrt{s} = 1-3 \text{ TeV}$

Subject of studies in the near future

CLIC - a brief introduction

CLIC: The most mature option for a multi-TeV e⁺e⁻ collider

CLIC Accelerator:

- $\sqrt{s} = 3 \text{ TeV}$ with two lower energy stages
- Two-beam acceleration, warm RF, gradient 100 MV/m
- Polarised electron beam, luminosity > 10³⁴ cm⁻²s⁻¹

CLIC Detectors:

Two detector concepts based on ILC designs, adapted to

CLIC conditions

- ultra low mass vertexing
- particle flow calorimetry
- ▶ 4-5 T solenoids

CLIC CDR completed: feasibility of machine and precision physics demonstrated

Top physics at CLIC

Top quarks at CLIC

- Event signature given by the decay of the W bosons
- At lepton colliders:
 - top pairs are easily identifiable
 - concentrate on large branching fractions to fully hadronic and semileptonic states, with controllable missing energy

Top Pair Branching Fractions

Analysis challenges at CLIC

- Key reconstruction challenge: pile-up of $\gamma\gamma$ hadrons background
- Rejected beam-induced backgrounds with timing & pt cuts
- Jet finding based on hadron collider k_t algorithm (two additional beam jets)
- Analyses fully simulated in GEANT4 including beam background overlays

No background suppression

Background suppression

Established analysis arxiv:1303.3768v1 submitted to EPJC

Top mass at CLIC

- Measure the top mass in top pair production
- Two complementary methods
- I) Invariant mass at $\sqrt{s} = 500 \text{ GeV} (100 \text{ fb}^{-1})$
 - can be performed at arbitrary energy above threshold: high integrated luminosity
 - experimentally well defined (but not theoretically - "PYTHIA" mass)
- 2) Threshold scan at $\sqrt{s} = 350 \text{ GeV} (10 \times 10 \text{ fb}^{-1})$
 - theoretically well understood, can be calculated to higher orders
 - needs dedicated accelerator time

 $2m_t$

Top quark reconstruction

- I) Lepton finding
 - classifies event: semi-leptonic / fully hadronic
- 2) Jet clustering
- 3) Flavour tagging
- 4) W reconstruction
 - FH: take best jet pairing
 - SL: neutrino absorbs uncertainties tail
- 5) Kinematic fitting
 - constrain W masses, momentum conservation
 - substantially improves mass resolution, reduces impact of uncertainties
 - provides background rejection

Invariant mass measurement

channel	m_{top}	Δm_{top}	$arGamma_{ ext{top}}$	$\Delta arGamma_{ m top}$
fully-hadronic	174.049	0.099	1.47	0.27
semi-leptonic	174.293	0.137	1.70	0.40
combined	174.133	0.080	1.55	0.22

Threshold scan

- Pure NNLO cross section (calculated with TOPPIK [Hoang & Teubner])
 distorted by ISR and luminosity spectrum
- Combined with selection efficiency and background contamination from full simulations: Simulated data points

Threshold mass and α_s

- Threshold behaviour of the cross section depends on the strong coupling constant
- 2D template fit to cross section used to extract m_t , and α_s

1S top mass and α_s combined 2D fit m_t stat. error m_t theory syst. (1%/3%) α_s stat. error α_s theory syst. (1%/3%) α_s theory syst. (1%/3%) α_s theory syst. (1%/3%)

Threshold scan

Top mass systematics

- 1) Bias from top mass and width assumptions in generator
 - effect is below the statistical uncertainty, no bias found
- 2) Jet energy scale
 - 1% for light jets (W events), similar for b jets (Z, ZZ events)
 - effect is below statistical uncertainties of the measurement
- 3) Beam energy:
 - Expect 10⁻⁴ precision on CMS energy: 30 MeV uncertainty on top mass (also applies to invariant mass due to kinematic fit)
- 4) Non-ttbar background:
 - 5% background uncertainty results in 18 MeV uncertainty on top mass
- 5) Luminosity spectrum:
 - e.g. 20% uncertainty on luminosity peak width results in 75 MeV uncertainty on top mass. Achievable precision still under investigation

Top Yukawa coupling

- Heaviest SM particle, couples most strongly to the Higgs field
- Measurement of ttH cross section allows extraction of top Yukawa coupling
- New physics could induce sizeable deviation from SM expectation [arXiv:1206.3560]

Direct measurement
Sensitive to NP at tree level
Complex final state

tth reconstruction

- Similar reconstruction strategy to tt events addition of two b jets
- Eight fermion final state! Fully hadronic or semi-leptonic
 - I) Lepton finding
 - 2) Jet clustering
 - 3) Flavour tagging
 - 4 b jets!
 - 4) Jet pairing
 - Choose permutation with smallest chi²:

$$\chi^2 = \frac{(M_{12} - M_W)^2}{\sigma_W^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_h)^2}{\sigma_h^2}$$

Provides background rejection

Semi-leptonic selection

- BDT used to classify events using discriminating variables
- Selection chosen to maximise significance

Selected events in 1.5 ab-1

- ttH semi-leptonic channel: 171
- tt background: 274
- Total background: 590

ttZ semi-leptonic

15

Preliminary result (semi-leptonic channel)

New analysis
preliminary result

- ttH cross section measurement at $\sqrt{s} = 1.4 \text{ TeV}$, using 1.5 ab⁻¹
- Statistical uncertainty of 16.1% at CLIC

Next:

- Improve semi-leptonic analysis
- Combine with fully hadronic channel (higher statistics)
- Need to account for Higgsstrahlung to extract top Yukawa coupling:

t radiates Higgs sensitive to top Yukawa coupling

Higgsstrahlung not sensitive to top Yukawa coupling

Top as a probe for new physics

New physics effects

- Probe ttZ vertex to search for additional gauge bosons, extra dimensions
- A_{FB}: modified vertex gives different A_{FB} than predicted by SM
- A_{LR}: use polarised electron beam to enhance t_L / t_R. Measure change in cross section for different polarisations

Advantages at CLIC

- Sensitivity to new physics improves at higher centre of mass energy: E^2/Λ^2
- Highly boosted top quarks easier jet association

On the CLIC top physics agenda: A_{FB}, A_{LR}, couplings to bosons, CP violation, FCNC top decays

Summary

- Top physics present at every energy stage of CLIC design
- Top quark mass measurement:
 - Invariant mass at $\sqrt{s} = 500$ GeV uncertainty 80 MeV/c²
 - Threshold scan at $\sqrt{s} = 350$ GeV uncertainty 34 MeV/c²
- Top Yukawa coupling
 - ttH semi-leptonic cross section measurement at $\sqrt{s} = 1.4 \,\text{TeV}$ uncertainty 16.1%
- Top as a probe for new physics
 - Exploit polarised electron beam, benefit from $\sqrt{s} = 3 \text{ TeV}$

Backup

Effect of luminosity spectrum

- Same analysis but using ILC luminosity spectrum
- Identical 2D extraction of m_t , α_s

1S top mass and α_s combined 2D fit

 m_t stat. error

 m_t theory syst. (1%/3%)

 α_s stat. error

 α_s theory syst. (1%/3%)

27 MeV 5 MeV / 9 MeV 0.0008 0.0007 / 0.0022

20% reduction in statistical uncertainty on mass

