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Abstract

To achieve a high precision t mass ðmtÞ measurement at the forthcoming high luminosity experiment, Monte Carlo simulation and

sampling technique are adopted to simulate various data taking cases from which the optimal scheme is determined. The study indicates

that when mt is the sole parameter to be fit, the optimal energy for data taking is located near the tþt� production threshold in the

vicinity of the largest derivative of the cross-section to energy; one point in the optimal position with luminosity around 63pb�1 is

sufficient for getting a statistical precision of 0:1MeV=c2 or better.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The simplest and most precise technique to determine the
mass of the t lepton ðmtÞ is a scan of the tþt� cross-section
near the production threshold in an eþe� annihilation. This
technique needs a precise calibration of the beam energy
and a good understanding of the production cross-section
near threshold. Experimentally, depolarization technique
has been developed by KEDR collaboration to realize a
high accurate determination of the beam energy at a level
of 10�6 [1], while theoretically, precision at a level of 10�4

has been achieved for the tþt� production cross-section
near the threshold [2–4]. Moreover, large t data sample is
expected from the forthcoming experiment BESIII [5],
therefore it is of great interest to know what precision one
expects to achieve in mt measurement in the near future.

For the BES collaboration, a fairly high precise
value of mt has been achieved by the threshold scan
e front matter r 2007 Elsevier B.V. All rights reserved.
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method [6–8]:

mt ¼ 1776:96þ0:18þ0:25�0:21�0:17 MeV/c2, (1)

with a relative error of 10�4. We note that the relative
statistical ð1:6� 10�4Þ and the systematic ð1:7� 10�4Þ un-
certainties are at the same level. In this work, we would focus
on the statistical aspect of t mass measurement at BESIII. So
far as the effect due to systematic uncertainties is concerned, we
merely present a preliminary estimations at the end of paper.
Herein to achieve high precision in mt we want to find out:
1.
 What is the optimal distribution (position) of the data
taking points?
2.
 How many energy points are needed for the scan in the
vicinity of threshold?
3.
 How much luminosity is required for certain precision
expectation?

2. Methodology

Within a specified period of data taking time or
equivalently for a given integrated luminosity, we try to
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Fig. 1. Flow chart of sampling simulation, where i ði ¼ 1; 2; . . . ;NptÞ

indicates certain scheme and j ðj ¼ 1; 2; . . . ;NsampÞ sampling times.
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find out the scheme which can provide the highest precision
on mt. The sampling technique is utilized to simulate
various data taking possibilities among which the optimal
one is chosen. For certain simulation, the likelihood
function is constructed as follows [6–8]:

LFðmtÞ ¼
YNpt

i

mNi
i e�mi

Ni!
, (2)

where Ni is the observed number of tþt� events for em final
state1 at scan point i; mi is the expected number of events
and given by

miðmtÞ ¼ ½� � Bem � sobsðmt;E
i
cmÞ þ sBG� �Li. (3)

In Eq. (3), Li is the integrated luminosity at the ith point;
� is the overall efficiency of em final state for identifying
tþt� events, which includes trigger efficiency and event
selection efficiency; Bem is the combined branching ratio for
decays tþ ! eþnent and t� ! m�nmnt, or the correspond-
ing charge conjugate mode; sobs, which can be calculated
by the improved Voloshin’s formulas [2], is the observed
cross-section measured at energy Ei

cm with mt as a
parameter; and sBG is the total cross-section of back-
ground channels after tþt� selection.

In the following study concerned with statistical
uncertainty, we take � ¼ 14:2% [9], D (energy spread2)
¼ 1:4MeV, Bem ¼ 0:06194 [10], and neglect corresponding
uncertainties whose effects will be discussed briefly in
Section 5. As to sBG, the previous experience [6] indicates
that sBG � 0:024 pb which is fairly small comparing with
the tþt� production cross-section (0.1 nb) near threshold.
Moreover, at the forthcoming detector with high luminos-
ity, a large data sample can be taken below the threshold to
measure sBG rather accurately. In actual fit as a constant,
sBG has tiny effect on the optimization of points
distribution. For simplification, sBG is set to be zero,
which means that our study is background free.

In the following analysis, the value of t mass itself is
assumed to be known and under such an assumption, we
attempt to answer the questions proposed at the end of
the previous section. Nevertheless, when think twice about
the first two questions, we observe that they actually
intertwist with each other, that is the optimal number of
point depends on the distribution of points and vice versa.
To resolve such a dilemma, we start from a simple
distribution and find the optimal number of points, then
based on which we finally determine the number of points.
1For briefness, the em channel ðtþ ! eþnen̄t; t� ! m�n̄mnt, or tþ !
mþnmn̄t; t� ! e�n̄entÞ is considered firstly; the statistical significance will

be further improved when more channels are taken into account, see

Section 5 for detailed discussion.
2In the simulation, the energy varies in a range, so the energy spread is

actually calculated by an empirical formula: D ¼ ð0:16203E2
cm=

4þ 0:89638Þ � 10�3 GeV, which gives D ¼ 1:4MeV at Ecm=2 ¼
1:77699GeV [9].
3. First optimization

As a tentative beginning, the energy interval to be
studied is divided evenly, viz.

Ei ¼ E0 þ ði � 1Þ � dE ði ¼ 1; 2; . . . ;NptÞ (4)

where the initial point E0 ¼ 3:545GeV, the final point
Ef ¼ 3:595GeV, and the fixed step dE ¼ ðEf � E0Þ=Npt

with Npt being the number of energy points. For a given
integrated luminosity ðLtotÞ it is also apportioned aver-
agely at each point3, i.e. Li ¼Ltot=Npt.
In order to reduce the statistical fluctuation, sampling is

repeated many times ðNsamp ¼ 500 for our study) for each
scheme (say for each NptÞ, the average value and
corresponding variance of the fit out t mass are worked
out as follows [11]:

mi
t ¼

1

Nsamp

XNsamp

j¼1

mi
tj, (5)

S2
mt ðm

i
tÞ ¼

1

Nsamp � 1

XNsamp

j¼1

ðmi
tj �mi

tÞ
2. (6)

Here it should be noted that i indicates the certain scheme,
whose value can be 1 while j indicates the sampling times
which equals to 500 in the following study. Without special
declaration, the meaning of the average defined by Eqs. (5)
and (6) will be kept in the study follows.
The general flow chart of sampling and fitting research is

presented in Fig. 1.

3.1. Data taking points

Using the experiment parameters given in Section 2, �, D,
and Bem, setting Ltot ¼ 30 pb�1, and Npt ranging from 3 to
20, the fitted results are shown in Fig. 2(a), or more clearly
3Another scheme is to apportion the total number of event evenly at

each point, the luminosity at each point is determined by relation Li ¼

Ltot=ðsi �
P

i 1=siÞ with si denotes the cross-section at the ith point. Such

a scheme leads to the same final conclusion as that depicted in this work.
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Fig. 2. The variation of Dmt (or jDmtjÞ and Smt against the number of points Npt. In (a) the dots and error bars represent Dmt and Smt , respectively;

in (b) the diamonds denote jDmtj and the crosses Smt .

Table 1

The relation between luminosity and statistical uncertainty of mt

Ltot ðpb
�1
Þ Ecm ¼ 3:55398GeV Ecm ¼ 3:5548GeV

Smt (MeV) Dmt (MeV) Smt (MeV) Dmt ðMeVÞ

9 0.24874 0.02931 0.29240 0.02114

18 0.16926 0.01550 0.19635 0.00756

27 0.14024 0.01234 0.15670 0.00475

36 0.12130 0.00812 0.14384 0.00504

45 0.10653 0.00824 0.12717 0.00292

54 0.09783 0.00717 0.10714 �0.00037

63 0.09035 0.00726 0.09923 �0.00003

72 0.08424 0.00520 0.09297 0.00008

100 0.06781 0.00129 0.07876 �0.00002

1000 0.02146 0.00016 0.02515 0

10 000 0.00684 0 0.00805 0

4The first point for two kinds of fit in Fig. 3 is actually ineffective for

estimator in Eq. (2) since the expected number of events equals to zero

ðm ¼ 0Þ below threshold.
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in Fig. 2(b), where Dmt ¼ mt �m0
t , the difference between

the fitted mt and the input one ðm0
t ¼ 1776:99MeV=c2

according to PDG06 [10]), and Smt the corresponding
uncertainty.

The Dmt here reflects the fit bias due to the Poisson
distribution for the small number of events. With the
increasing luminosity of data taking (correspondingly the
increasing of the number of events), the bias also tends to
zero (wherein the Poisson approximates a Gaussian
distribution). This point can be seen more clearly in the
following study (refer to Table 1 for the variation of Dmt

with the increasing of luminosity).
For the uncertainty of the fit two points should be noted:

first, Smt is much larger than jDmtj (the absolute value of
DmtÞ, so from the point view of accuracy, the former is
much more crucial than the latter. Therefore, Smt is
adopted to assess the quality of fit, in another word, the
smaller the Smt the better is the fit. Second, it is prominent
that too few data taking points lead to large uncertainty
while too many points have no contribution for precision
improvement either. As indicated in Fig. 2(b), Npt ¼ 5 is
taken as the optimized number of points for the evenly-
divided-distribution scheme.

3.2. Optimal distribution

With five points, we want to further search for the
distribution which can afford us the small fit uncertainty.
As without any theoretical or empirical guidance, various
possibilities are tried by employing the sampling technique,
that is the energy points are taken randomly in the chosen
interval. For 200 times sampling, singled out are two fit
results with the smallest (Smt ¼ 0:152MeV=c2, denoted by
stars) and greatest (Smt ¼ 1:516MeV=c2, denoted by
diamonds) fit uncertainties; their distributions are shown
in Fig. 3, by virtue of which it is obvious when the points
crowd near the threshold the uncertainty is small; on the
contrary, when the points are far from the threshold the
uncertainty becomes large.4 More mathematically, it is
found that the smallest uncertainty is acquired when points
gather at the region with the large derivative of the cross-
section to energy. So this result implies that the region with
large derivative is presumably the optimal position for data
taking. This speculation will be proved in the next section.

4. Second optimization

Based on the above studies, we are to find out (a) the region
which is sensitive to fit uncertainty, (b) the optimal number of
points in the region, and (c) the position for the optimal points.

4.1. Optimal region

To hunt for the sensitive position, two regions are
selected as shown in Fig. 4(a): the region I ðEcm �
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ð3:553; 3:558ÞGeVÞ is selected with the derivative falls to
75% of its maximum while the region II ðEcm �

ð3:565; 3:595ÞGeVÞ is selected with the variation of
derivative is comparative smooth than that in region I.

To confirm the fore-mentioned speculation, two schemes
are designed. For the first scheme, two points are taken in
the region I, one at 3.55398GeV as the threshold point and
the other at 3.55484 GeV corresponding to the largest
derivative point. As in the region II, the number of points
Npt increases from 1 to 20, with each point having the
luminosity 5 pb�1. The fit results are displayed in Fig. 4(b)
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Fig. 3. The distributions of the data taking points with the smallest

(denoted by stars) and greatest (denoted by diamonds) Smt . The solid

curve is the calculated observed cross-section, and the dashed line

the corresponding derivative of cross-section to energy with a scale

factor 10�2.
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Fig. 4. (a) Two energy subregions, denoted by I and II, with different derivat

dashed line the corresponding derivative value with a scale factor of 10�2; (b

denote, respectively, the results for the first and second schemes as depicted in
by the crosses. Clearly, the increase of points in the region
II hardly has contribution for accuracy improvement
ðSmt ¼ 0:25MeV=c2 almost remains the same with the
increasing number of points in region II). That is to say,
the region I is the sensitive region so far as fit uncertainty is
concerned while the region II is not. To prove this point
further, for the second scheme, merely the points in the
region II are taken, Npt also increases from 1 to 20. The fit
results are displayed in Fig. 4(b) by the diamonds. As
expected, with the increasing number of points, Smt
decreases as well, but even with 20 points in the region II
the value of Smt ¼ 0:73MeV=c2 is still much larger than
that with solely two points in the region I. So it is
concluded that the points within the region I are more
useful for optimal data taking.

4.2. Optimal position

In this subsection, the first thing needed to be known is
how many points are optimal in the region with large
derivative. As the procedure in Section 3.1, the total
luminosity Ltot ¼ 45 pb�1 is rationed averagely into Npt

points ðNpt ¼ 1; 2; . . . ; 6Þ within the energy region from
3.553 to 3.557GeV. The results are shown in Fig. 5,
according to which the number of points has weak effect
on the final uncertainty. In other words, within the large
derivative region, one point suffices to give rise to small
uncertainty. This is easy to understand since there is only
one free parameter ðmtÞ needed to be fit in the tþt�

production cross-section, one measurement will further fix
the normalization of the curve. The larger the derivative,
the more sensitive to the mass of the t lepton.
Since one point is enough, then an immediate question is

where the optimal point should locate? To answer it, the
scan with one point with the luminosity Ltot ¼ 45 pb�1 is
made and the results are shown in Fig. 6. Just as previous
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study indicated, the small uncertainty is achieved near
the peak of the derivative. If looking into the region
from 3.5520 to 3.5565GeV, it is found that the smallest
Smt ¼ 0:105MeV=c2 is obtained near the mt threshold
ðEcm ¼ 3:55398MeVÞ, which has a deviation from the
position ðEcm ¼ 3:55484MeVÞ with the greatest cross-
section derivative where Smt ¼ 0:122MeV=c2. In addition,
the study also indicates that within 2MeV region the
variation of Smt is fairly smooth (from 0.105 to
0:127MeV=c2Þ, which is very favorable for actual data
taking.
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cross-section with scale factor 10�1.
4.3. Luminosity and uncertainty

The last question we are concerned with is the relation
between uncertainty and luminosity. For the fit with one
point at the large derivative region, some special results are
listed in Table 1. The second and third columns present the
results for one point at Ecm ¼ 3:55398GeV which corre-
sponds to the threshold while the last two columns give the
results at Ecm ¼ 3:55484GeV which corresponds to the
point with the greatest derivative of cross-section. In the
light of Table 1, first the accuracy is inversely proportional
to the luminosity; second the luminosity of 63 pb�1 is
sufficient to provide the statistical precision less than
0:1MeV=c2.

5. Discussion

At the forthcoming experiment BESIII the designed
peak luminosity is around 1nb�1 s�1, if the average
luminosity is taken as 50% of the peak value, then two
days’ data taking time will lead to the statistical uncertainty
of mt less than 0:1MeV=c2. Notice this evaluation is solely
for em-tagged events, if more channels are utilized to tag
t-pair, such as ee, em, eh, mm, mh, hh (h: hadron), and so on,
more statistics can be expected (according to previous BES
analyses [6,8] experience, the number of multi-channel-
tagged events is at least 5 times more than that of em-tagged
events). Therefore at BESIII, one week’s data taking time
will lead to statistical uncertainty less than 0:017MeV=c2

for mt measurement.
For present fitting scheme, the systematic uncertainties

due to various experimental factors are quantified by
reasonable variations of the corresponding quantities (2%
variation for luminosity L, 2% for efficiency �, 0.5% for
branching fraction Bem, 10% for background sBG, 30% for
energy spread). In addition, the effect due to theoretical
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Table 2

Systematic uncertainties for mt measurement

Source dmt ð10
�3 MeVÞ dmt=mt ð10

�6Þ

Luminosity 14.0 7.9

Efficiency 14.0 7.9

Branching fraction 3.5 2.0

Background 1.7 1.0

Energy spread 3.0 1.7

Theoretical accuracy 3.0 1.7

Energy scale 100 56.3

Summation 102 57.5
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calculation is by comparing two kinds of formulas with
different accuracy [2,7,9]. The most important source of the
uncertainty in mt measurement is the precision on the
absolute beam energy determination. For the mt measure-
ment at BESI, this uncertainty is 0:1MeV=c2 [13],
which will be the dominant uncertainty if it is the same
at BESIII, as summarized in Table 2. At present,
new techniques can be used to determine the absolute
energy value with an accuracy at the level of 10�5 or 10�6.
If such kinds of technique can be realized at BESIII, the
systematic uncertainty due to energy scale can be greatly
decreased.

At last, a few words about the data taking design for
BESIII. To measure mt, data taking at three points will be
desired. One is at the large derivative region, which is the
optimal position as our study indicates; the other is below
the threshold, which can be used for background study (to
measure sBGÞ; and the third one is above the threshold,
which can be used to determine the event selection criteria
for data analysis at the optimal point. In fact, the data
below and above threshold can also be used for R-value
measurement and background study for J=c and c0 data
analyses [12]. So it is reasonable to consider the mt

measurement between the periods of data taking for the
J=c and c0.
6. Summary

We adopt Monte Carlo simulation and sampling
technique to simulate various data taking possibilities for
a high precision measurement of t mass, from which we
find out the optimal scheme. As to the questions proposed
in the Introduction, our answers are as follows:
1.
 The optimal position for data taking is located at the
region near the tþt� production threshold with large
derivative of the eþe� ! tþt� cross-section to energy.
2.
 One point is enough to achieve small error within the
optimal region.
3.
 The luminosity of 63 pb�1 is sufficient for a statistical
precision better than 0:1MeV=c2.
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