Higgs physics at LHC

G.Unal (CERN) Beijing 14/12/2006

- Higgs production and decay
- SM Higgs boson search
 - Emphasis on M_H < 200 GeV
 - Н→үү
 - H→4 leptons
 - H→WW* ("counting" experiment)
 - VBF Higgs production
- Higgs properties measurement
- Higgs sector in Supersymmetry

Higgs production @ LHC

Higgs decay

All the relevant BR known with few % accuracy (NLO computations)

•gg→H : dominant production, large QCD corrections, H "often" produced associated with a "hard" jet (ZZ*,WW*, γγ decays)
•qq→Hqq (WW,ZZ fusion "VBF"). Specific signature allowing better background rejection (ττ,WW*, γγ decays, also bb ??)
•ttH production Lepton from top allows to trigger (bb decay, also ττ,WW* for coupling measurements, γγ at high lumi.)
•WH,ZH production: γγ, WW* at high lumi.

Diffractive Higgs production

- pp→ppH
- Higgs mass from measurement of outgoing proton (Roman pots) => ~1% resolution
 - Could allow to access bb final state at low mass
- Significant uncertainty on production rate
- Not obvious to trigger
- Not discussed further here

- Powerful e/photon/muon/tau/b-jet identification Rjet ~few 10³ for eff(photon) ~ 80%
 - Rjet ~ 10^5 for eff(elec) ~80%
 - R(light flavor jets) ~100 for eff(b-jet) ~60%
 - R(jet) ~few 10² for eff(tau→hadrons) ~50 %
- Very good energy measurement of e/photon and muons
 - ~1 2 % for elec pt~25-50 GeV
- Jets and Transverse missing momentum

SM Higgs Searches

- Benchmark channels for detector performances
 - $H \rightarrow \gamma \gamma$ (old channel, new variations)
 - H→4I
- "counting experiment" channels
 − H→WW^(*)
- Vector Boson fusion production channels $H \rightarrow \tau \tau$, WW^(*)

- Key points:
 - Good mass resolution (Intrinsic width is negligible) => Energy resolution of e.m. calorimeter + primary vertex determination
 - Good photon identification: To reduce jet background below true photon background
 - Very fine segmentation (*ATLAS*) to allow photon/ π^0 separation event by event
 - Isolation cuts
 - Recovery of conversions:
 - ~30% of photons convert in tracker

9

- Different strong points for CMS (Energy resolution) and ATLAS (fine segmentation, photon angle measurement). Overall, sensitivity is similar if using same input cross-sections.
- Inclusive channel is still one of the most powerful at low mass (~6-8 sigmas for 30 fb⁻¹)
- Several possibilities to divide events according to production mode (H+0J vs H+1Jet, VBF production, associated production, etc..) Can further increase the discovery potential

- Simple cut based analysis: count events in mass window after kinematical cuts
- "Optimized" analysis:
 - CMS: Add kinematic information and photon isolation (help to distinguish reducible background from direct photons)
 - ATLAS: Add Pt(photon pair), angular distribution in likelihood
 - Typically ~30-40% improvement in significance
 - Systematic error from fitting background rate ~ 10-15 % effect (ATLAS study)

$H \rightarrow \gamma \gamma$ in associated production

Can also consider WH,ZH (lepton-gamma-gamma) final states, and H produced with VBF process (H+2 jets final state)

=> Combining all channels should increase discovery potential

<u>H→4leptons</u>

Rely on good e/muon identification and energy resolution

(mass resolution ~1.5-2 GeV)

Irreducible background: ZZ(*) -> 4I

q qbar annihilation known at NLO

add ~20% to account for gg->ZZ

Reducible backgrounds:

Zbb -> 4 leptons

t t -> 4 leptons (also non resonant)

Reduced by isolation cuts + anti impact parameters

Typical rejection ~ 100 for Zbb => rejected one order of magnitude below ZZ Clean but low statistics (especially < 130 GeV and ~170 GeV)

<u>H</u>→WW*

- In gluon fusion production
- Main interest is near M_H ~160 GeV:
 - − BR(H→WW) >95%, other decay modes are suppressed
- Look at dilepton final state (ee, $\mu\mu$ and e μ)
- Backgrounds:
 - t-tbar production: rejected by jet-veto
 - WW continuum: Use spin correlation to distinguish signal from background
- Difficulty:
 - Counting experiment, essentially no mass reconstruction and no mass peak
 - Rely on accurate estimate of background rate
 - Strategy: Use control region(s) to estimate background(s) and extrapolate to signal region
- New developments:
 - Include gg→WW continuum contribution: Small increase in background but shape more similar to signal
 - Include both t-tbar and single top backgrounds @ NLO
 - (Les Houches 2005)

VBF Higgs production

<u>VBF H $\rightarrow \tau \tau$ </u>

- Typical selection:
 - 2 tagging jets
 - Higgs decay products in central region between tagging jets
 - Jet veto
 - Lepton-lepton or lepton-hadron final state for tau decays
 - Use missing transverse momentum + collinear approximation of tau decays to reconstruct invariant mass of tau pair
 - Resolution limited by missing pt resolution: ~10 GeV-13 GeV
- Main background:
 - $Z \rightarrow \tau \tau$ + 2 jets. Dangerous for low M_H

SM Higgs Discovery potential

Provided detector performances and background systematics are under control

Background systematics and how to normalize bkg from data

Channel	Main background	S/B	Bkg. sys for 5s	Proposed technique/comments
Η->γγ	Irreduc. γγ Reducible qγ	3-5%	0.8%	Side-bands (bkg shape not known a priori)
ttH H->bb	ttbb	30%	6%	Mass side-bands Anti b-tagged ttjj ev.
H->ZZ*-> 4 lep	ZZ->4I Reducible tt, Zbb	300-600%	60%	Mass side-bands Stat Err <30% 30fb ⁻¹
H->WW*->II _{∨∨}	WW*, tW	30-150%	6-30%	No mass peak Bkg control region and extrapolation
VBF channels In general	Rejection QCD/EW	Study forward jet tag and central jet veto		Use EW ZZ and WW QCD Z/W + jets
VFB H->WW	tt, WW, Wt	50-200%	10%	Study Z,W,WW and tt plus jets
VBF H->ττ	Zjj, tt	50-200%	10-40%	Mass side-bands Beware of resolution tails

Higgs boson properties

- Mass,Width
- Spin,CP (SM 0⁺⁺)
- Couplings to other bosons and to fermions
- Higgs auto-coupling

<u>Higgs mass measurement</u>

• Relatively easy from $H \rightarrow \gamma \gamma$ or 4leptons. The channel $H \rightarrow \tau \tau$ can also contribute at low luminosity

Spin,CP

Observation of gg \rightarrow H or H $\rightarrow\gamma\gamma$ excludes spin 1

For M_H >200 GeV, study spin/CP from $H \rightarrow ZZ \rightarrow 4I$

Third step: -No new particles in loop, -No strong coupling to light fermions \Rightarrow Express all rates and BR as a function of 5 couplings $g_{W},g_Z,g_{top},g_b,g_{\tau}$

Example: σ VBF: $a_{WF}.g_W^2+a_{ZF}.g_Z^2$ BR($\gamma\gamma$): $(b_1.g_W^2-b_2.g_{top}^2)/\Gamma_H$

« Abolute » scale not measurable: Measure $g_Z/g_W, g_{top}/g_W, g_\tau/g_W$ and $g_W/\sqrt{\Gamma_H}$

Most difficult: b Yukawa coupling VBF HW->I bb feasibility ?

> If more assumptions (like g_w<g_wSM), can get abolute couplings

14-december-2006

MSSM Higgs searches

- 2 Higgs doublets
- 5 physical states after EW symmetry breaking h,H,A,H[±] (h,H CP=+1, A CP=-1)
- 2 parameters at tree level
 - Usually use M_A and $tan(\beta)$
 - M_h < M_Z at tree level
- Large radiative corrections
 - Introduce dependence on other Susy parameters
 - Increase upper bound on M_h $~\sim 135~GeV$
- Define few scenario (Carena et al, hep-ph/0202167)
 - " M_h^{max} ",gluophobic (minimizes effective ggh vertex), no-mixing,small α_{eff} (reduces hbb)
- CP violating scenario are also investigated (not discussed here)

Φ	$g_{\Phi \bar{u} u}$	$g_{\Phi ar{d} d}$	$g_{\Phi VV}$	$g_{\Phi AZ}$	$g_{\Phi H^{\pm}W^{\mp}}$
$H_{\rm SM}$	1	1	1	0	0
h	$\cos\alpha/\sin\beta$	$-\sin\alpha/\cos\beta$	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	$\mp \cos(\beta - \alpha)$
Н	$\sin\alpha/\sin\beta$	$\cos\alpha/\cos\beta$	$\cos(\beta - \alpha)$	$-\sin(\beta - \alpha)$	$\pm \sin(\beta - \alpha)$
A	$\cot\beta$	$ an \beta$	0	0	1

 $[\]cos\!2\alpha = -\!\cos\!2\beta \; ((M_{\text{A}}{}^2 \!-\! M_{\text{Z}}{}^2) / (M_{\text{H}}{}^2 \!-\! M_{\text{h}}{}^2))$

MSSM Higgs Searches

- Apply SM searches
 - Rescale cross-section and BR
 - $\sigma(gg \rightarrow h) = \sigma_{SM} \Gamma(h \rightarrow gg)_{MSSM} / \Gamma(h \rightarrow gg)_{SM}$
 - $\sigma(VBF \rightarrow h) = \sigma_{SM} \sin^2(\alpha \beta)$
 - Mostly relevant for h searches when it is SM like (also for H at low M_A)
- Direct searches of $H/A \rightarrow SM$ particules
 - Degenerate in mass in most of parameter space
 - Cross-section gg \rightarrow bb H/A \sim tan²(β) => explore large tan(β)
 - Final state H/A $\rightarrow \tau\tau$ (BR ~10%) or $\mu\mu$ (BR ~ 3.10⁻⁴)
 - Can tag or not the "soft" b produced in association with Higgs
 - $H/A \rightarrow bb$ challenging (trigger)
- Direct searches of H[±]
 - gg \rightarrow t b H[±] production followed by H[±] \rightarrow τ v or tb
 - Produced in top decays if mass < top mass
- Searches of Susy→h (not discussed here) or Higgs→Susy (→4leptons+Etmiss, →invisible, ...)

Application of SM Higgs searches

<u>H,A $\rightarrow \tau\tau$ searches (CMS example)</u>

Lepton-Lepton, Lepton-hadron and hadronhadron final states Mass reconstruction with collinear approximation (Etmiss resolution) Can tag or not soft-b's Main backgrounds: Z/Drell-Yan, ttbar, W+jets QCD (for hadron-hadron final state, need powerful tau identification)

14-december-2006

MSSM Summary for 300 fb⁻¹ (ATLAS) no H->Susy

If $tan(\beta) \sim 10$, $M_A > 200$ GeV, only h is seen Can we observe deviation in coupling measurements ?

Example of H->SUSY

H→invisible also considered (in some non-minimal SUYS models or more exotics models)

Conclusions

- Many SM Higgs channels have been studied in details
 - Already good sensitivity to SM Higgs with ~10 fb⁻¹
 - Provided detector performances and backgrounds are under control. Only data will tell
- Detailed Higgs studies will require more statistics (as well as WW scattering at high energy)
- MSSM Higgs sector covered
 - But could observe only h "SM like"
- Stay open to more complicated scenario