

Simulation Study of Trigger Decision Criterion for ALICE PHOton Spectrometer

Yaping Wang, Zhongbao Yin

IOPP@CCNU, Wuhan, China

Outline

- Introduction
- Trigger decision criterion of PHOS
- **Energy reconstruction performance** ٠
- Trigger efficiency
- Trigger rate
- summary and outlook

ALICE Set-up

2

Electromagnetic Calorimeter, PHOS

PHOS (PHOton Spectrometer) is a high resolution electromagnetic calorimeter consisting of 17920 detection channels based on lead-tungstate crystals(PWO₄).

- PHOS provides unique coverage of the following physics goals:
 - -study of initial phase of the collision of heavy nuclei via direct single photons and diphotons;
 - -jet-quenching as a probe of deconfinement, studied via high $p_{\rm T}$ π ⁰;
 - -signals of chiral-symmetry restoration.
- Technical data:

17920 lead-tungstate crystals(PWO₄)

-distance to IP
-coverage in pseudorapidity
-coverage in azimuthal angle
-crystal size
-depth in radiation length
-modularity
-total area
-total crystal weight
-operating temperature
-photonreadout

4600mm -0.12;+0.12 100° 22x22x180 mm³ 20 X₀ 5 modules 8m² 12.5 t -25 °C APD

Trigger decision criterion of PHOS

Global overview over all PHOS electronics. FEE electronics is within the dotted area (warm).

Chinese-French Workshop for LHC, Dec. 11-15, Beijing, China.

4

Trigger Regions

FEE->TRU signal routing

- 112 analog sums are fanned in, via 14 FEE to 1 TRU
- due to 2*2 sums one TRU covers 448 crystals
- 1 level-0 output
- 3 level-1 outputs

Reconstructed *E* distribution of incident electron with transverse momentum of 6 GeV/*c*

Left figure (sum of 3*3 crystals' deposited energy):

Mean value μ =5.51 GeV, covariance σ =0.104 GeV, σ_{E} /E=1.89%;

Right figure (sum of all activated crystals' deposited energy):

Mean value μ =5.66 GeV, covariance σ =0.099 GeV, $\sigma_{E}/E=1.75\%$.

Reconstructed *E* distribution of incident electron in low p_T range (Fig. a) and high p_T range (Fig. b)

The energy reconstructed distribution is well fitted by the function $E = k X p_T$ in a broad range.

Trigger efficiency of PHOS

Trigger efficiency loss about ~ 4% due to the TRU boundaries

Calculation method of trigger rate

 $p_{\rm T}$ spectrum of direct photon, π^0 and η were obtained, fitted with power law distribution:

 $\frac{1}{2\pi p_{\rm T} N_{\rm ev}} \frac{{\rm dN}}{{\rm d}p_{\rm T}} = A(1 + \frac{p_{\rm T}}{p_0})^{-n}. \quad (A, p_0 \text{ and } n \text{ were determined by data fitting})$

Particle number N_{par} per one collision measured by PHOS at the narrow p_T bin of $[p_T, p_T + \Delta p_T]$ is described approximately by the function:

$$N_{par} = A(1 + \frac{p_{T}}{p_{0}})^{-n} \times 2\pi p_{T} \Delta p_{T}.$$

The talk allows 10% statistical error, then sample particles number N_{sample} is set to 100 which is sufficient to satisfy data analysis work. So the needed event number is calculated as follows:

$$N_{event} = \frac{N_{sample}}{N_{par} \times R_{eff}}$$

Then, the trigger rate R_{trig} of PHOS was described by function:

$$R_{trig} = \frac{N_{event}}{t}$$

Where *t* means scheduled running time for each collision mode.

斩耗

 $p_{\rm T}$ spectrum at P-P collision mode with $\sqrt{s} = 14$ TeV

Trigger rate of PHOS for P-P collision

pp run: $\mathcal{L} = 5 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}, \sqrt{s_{NN}} = 14 \text{ TeV}, \text{ mini-bias events} \sigma_{\text{total}} \sim 0.1 \text{ b; Pythia6.2, } 6 \times 10^{6} \text{ pp collision events.}$

斩耗

 $p_{\rm T}$ spectrum at Pb-Pb collision mode with $\sqrt{s_{\rm NN}} = 5.5$ TeV

• PbPb run: $\mathcal{L} = 5 \times 10^{26} \text{ cm}^{-2} \text{s}^{-1}$, $\sqrt{s_{NN}} = 5.5 \text{ TeV}$, $\sigma_{\text{total}} \sim 7.7 \text{ b}$; Hijing1.36, 1×10^5 PbPb collision events, impact parameters (0, 3 fm).

Summary & Outlook

O Summary of trigger decision criterion of PHOS

- with good performance of energy reconstruction in a broad transverse momentum range from 0.5 GeV/c to 100 GeV/c;
- trigger efficiency has a loss ~4% due to TRUs' boundaries, but adoption of TRU can ensure <u>Level-0</u> trigger 300 ns decision latency and <u>Level-1</u> trigger 5500 ns decision latency in FPGA after collision;
- trigger rate: 1) for direct photons was much higher than it for π^0 and η mesons, 2) PHOS could provide <u>L0</u> trigger by itself to low p_T photon events and ALICE/CTP provide <u>L0</u> trigger to high p_T photon events, 3) PHOS could provide <u>L1</u> trigger by itself;

O Outlook for the work

- lots of jobs on TRU need to do in FPGA programming (VHDL) for the ALICE/PHOS;
- lots of simulation jobs need to do for the physics in ALICE/PHOS.

Thanks!

Assembly of PHOS module

ALICE-PHOS FEE Cards (Finished by Wuhan-Group)

