Physics in Atlas

G.Unal (CERN)

Obviously, a non exhaustive talk... ~1000 pages of Physics TDR in 1999 Many notes since that time Some emphasis on "early" data and their understanding (physics and detector)

Introduction

What the LHC should tell us:

- What is the mechanism responsible for the EW symmetry breaking?
- The SM Higgs boson (only piece of SM not observed today) or something else ?

Beyond the Standard Model ?

• Radiative correction to Higgs Mass:

 $\mathbf{\dot{y}}$ (+loops with W,Z and h)

- $\delta m_h^2 \sim m_{top}^2 / (4\pi^2 v^2) \Lambda^2$ (Λ =new physics scale)
- For $\Lambda \sim GUT$ or Planck scale, m_h ~100 GeV requires fine tuning between bare mass and radiative corrections
- « Traditional » Solution: Supersymmetry at the ~1 TeV scale: Cancellation between bosons and fermion loops
- Or a source of new physics such that $\Lambda << M_{planck}$
 - « Little Higgs »
 - Extra dimensions (several variants)
 - Models with alternative EWSB
 - Etc...
 - Energy Scale cannot be much more than ~ TeV
- Other « imperfections » in the Standard Model call for new physics (flavor sector, baryogenesis,) but the energy scale where these problems are solved is less obvious.

Experimental conditions

- Proton-Proton collisions @ 14 TeV
- Luminosity:
 - First run in 2007 at 900 GeV
 - First run @ 14 TeV in 2008, luminosity increasing to reach ~10³³cm⁻²s⁻¹ "low luminosity" phase
 - => ~ 30 fb⁻¹ between 2008 and 2010/2011
 - $\sim 10^{34} \text{cm}^{-2} \text{s}^{-1}$ "high luminosity" phase

=> ~300 fb⁻¹ by 2014/2015

- Pile-up: ~ 2 (low luminosity) to 20 (high luminosity) pp interactions ("minimum bias") per bunch crossing (every 25 ns)
- Trigger to go from 40 MHz interaction rate to ~200Hz to disk for offline analysis

Order of magnitude of main processes

ATLAS

Length : ~45 m Radius : ~12 m Weight : ~ 7000 tons (0.3 g/cm³) Electronic channels : ~ 10⁸ ~ 3000 km of cables

- Powerful e/photon/muon/tau/b-jet identification
 - Rjet ~few 10^3 for eff(photon) ~ 80%
 - Rjet ~ 10^5 for eff(elec) ~80%
 - R(light flavor jets) ~100 for eff(b-jet) ~60%
 - − R(jet) ~few 10^2 for eff(tau→hadrons) ~50 %
- Very good energy measurement of e/photon and muons
 - ~1 2 % for elec pt~25-100 GeV
- Jets and Transverse missing momentum

EM barrel calo performances from 2002 Test-Beam

⇒Expect at day 0: ~1% (or better) intercalibration few % on overall EM-scale

Detector Performance:Combined Test Beam 2004

22M events taken with the full ID/Calorimeter and validated by the offline monitoring;

- e⁺⁻, π⁺⁻, μ, γ
- E scan: 1 350 GeV
- B scan: 0 1.4 T
- Additional material ($\eta = 1.6$):
 - Pixel/SCT 12% X/X₀
 - SCT/TRT 24% X/X₀

CTB provides the means for studying detector performance. Experience gained has had major impact on ATLAS-wide studies:

- ... besides the magnitude of the effort on the HW and SW integration...
- 1. Development of reconstruction/alignment/calibration for real detector;
- 2. Study of individual detector performance (efficiency, resolutions, noise);
- 3. Improving the simulation/digitization;

Good understanding of the above is necessary for moving towards...

4. Combined performance (material effects, particle ID, photon conversions)

Photon Conversion Recovery in CTB-2004

(In Atlas ~30% of photons convert in the inner detector)

Physics menu

- *"amuse bouche":* 900 GeV (?), Jets, Minimum Bias
- *Appetizer:* Standard Model Physics (W,Z,top)
 - Precise top and W masses: more than just apperizers...
- *Main course:* Higgs physics
 - (see tomorrow morning for more details)
- *Dessert:* Supersymmetry

or "surprise du chef"

Will the data tell us to start with the dessert ?

not covered here: B physics, Heavy Ion physics

900 GeV data

Note: 30nb⁻¹ sample is less than the one of W,Z discovery Enough MB and Jets to check problems (also few direct photons) But no "accurate" in-situ calibration possible

Minimum Bias

Uncertainty in extrapolating to LHC energy O(10⁴) events allow a first measurement (reconstruct low pt tracks)

Similar studies required for underlying event Can start from di-jet event How universal is the underlying event tuning in the MC ?

Jets

Issues for cross-section:

- •Stat error ~1% at Pt=1000 GeV for 1fb⁻¹
- •Theory error ~15% (at 1TeV) from pdf, ~10% from higher order corrections
- •Jet energy scale: 5% uncertainty => 30% error on cross-section. Should aim for 1-2% scale uncertainty !
- •Jet algorithm issues (cone vs midpoint vs Kt)

Understanding jet reconstruction is a key issue in many channels

Standard Model Physics

- W,Z production
- W,Z as probes of detector performances
- W mass measurement
- Top production
- Top as probe of detector performances
- Top mass measurement
 - (top properties, polarization, single top)

W,Z production

σ(W→e∿)/dy

- Large production rates: •
 - σ.BR(W→lν) ~15nb
 - σ.BR(Z→II) ~ 1.5nb
- Selection relies on lepton identification (but $Z \rightarrow ee$ can be identified with calorimeter only)
- Measurement of cross-section: •
 - Dominated by systematics
 - Few % from modelling of production
 - Few % from luminosity uncertainty
 - Can be used alternatively as luminosity probe
- Rapidity distribution of lepton sensitive to structure function => can help constraining pdf

MC and SM understanding

- Many progress in recent years in MC tools for understanding SM processes (W,Z,top,jets,photons)
 - MC@NLO
 - Alpgen/Sherpa: matching between higher order tree diagrams and parton shower
 - => Better description of Pt
 distribution, event shapes, ...

(CDF data)

Intercalibration with Z

- Aim: Check/Improve intercalibration between regions
 of EM calorimeter
 - typical region size 0.2x0.4 in $\eta x \phi$
- Region i: $E \rightarrow E(1+\alpha_i)$ $M^2 \rightarrow M^2(1+\alpha_i+\alpha_j)$
- Use Z mass constraint to compute α_i
- With 100K Z statistical uncertainty is ~0.4%
 => good enough to improve intercalibration
- 100K Z <=> few days @10³³cm⁻²s⁻¹ few weeks @10³²cm⁻²s⁻¹

Z events are also powerful to measure lepton identification efficiencies

W mass measurement

- W→Iv: measure Pt(I) (or transverse mass)
- Stat. Uncertainty ~2MeV for 10fb⁻¹
- "Standard wisdom" for syst. uncertainty :20-25 MeV
 - 15 MeV from lepton energy scale
 - Scale is normalized with Z, so it is in fact the non linearity between M(Z) and M(W)
 - 10-15 MeV from modeling of W production
- Can this be improved by "better" use of Z events as a constraint on nonlinearities, W/Z production model ?
 - 5 MeV from Z stat. feasible (?)
 - But should disentangle all the effects that will be mixed up together in the Z data
- Dedicated and difficult analysis...

Top production

- QCD pair production
 - Dominated by gg fusion
 - 840 pb => LHC is a top factory (~ $1Hz@10^{33}cm^{-2}s^{-1}$)
- Also EW single top production
 - 300 pb
 - Sensitive to Vtb
- Top decay before hadronisation
 - Polarisation studies possible, Spin correlations
- In SM: t→bW decay, final state driven by W decay
- "Benchmark" channel for top mass measurement: Lepton+Jets
 - -One W to e/muon, one W to jets
 - -Clean S/B possible with b-tagging
 - $-W \rightarrow jet jet provides nice in-situ calibration for jet energy scale$
- •Top events can also be selected without b-tagging => measure b-tag efficiency with data

Chinese-french collaboration

Top Mass measurement

Higgs Physics

- "Easy" for ~200<M_H<600 GeV (gold-plated 4 lepton modes)
- Many channels to investigate to cover more interesting "low" mass range (115-200 GeV)
 - Higgs width is small in this range:
 - Mass resolution is limited by detector performances.
 - Benchmark channels (small BR)
 - $H \rightarrow \gamma \gamma$ (S/B ~5%, narrow peak)
 - H→ 4 leptons (narrow peak, "good" S/B but low stat.)
 - Vector Boson Fusion production modes:
 - Η→ττ
 - Several other modes

• Energy resolution

H→γγ:

- Photon angle measurement (+vertex from tracker)
- Jet background rejection (jet $\rightarrow \pi^0 \rightarrow \gamma\gamma$)
- Handling of conversions

VBF production qqH, $H \rightarrow \tau \tau$:

- Hadronic and Leptonic tau decays
- Missing Et for mass reconstruction
- "Forward" jet tagging
- Central jet veto

SM Higgs Discovery potential

-For $M_H \sim 115$ GeV, several channels can be combined

-Sensitivity better if NLO corrections to signal and background taken into account

-In principle, already good discovery potential with 10fb⁻¹ Provided detector performances and background systematics are under control

- Higgs properties measurements
 - Mass: "easy"
 - Witdh: direct measurement for
 - M_H>200 GeV Spin,CP: Powerful 4 lepton channel אָרָאָרָאָ above 200 GeV, more difficult below but several studies possible
 - Couplings to fermions and bosons: Measure as many (production)*(decay mode) channels as possible
- Chinesefrench collaboration
- ttH, WH with $H \rightarrow WW^*$ for instance
- ~5-20% accurary on ratio of couplings with 300 fb⁻¹
- SUSY Higgs sector
 - 3 neutral, 2 charged states in MSSM
 - 2 parameters (+radiative corr.)
 - Apply SM searches
 - Dedicated channels: Tau's are very important

<u>MSSM Summary for 300 fb⁻¹ (ATLAS) no H->Susy</u>

MHMAX scenario

At last one Higgs boson always found But sometime only one Higgs boson found *SM or MSSM ?* Coupling measurement allows to distinguish up to M_A~300-400 GeV

Higgs decay to SUSY and more complicated models (CP violation in Higgs sector, etc...) also under investigation

If no Higgs found ?

- Study $W_L W_L$ scattering at high mass
 - Requires probably large luminosity
 - Is there resonances ?
 - "Technicolor" like
 - Is the cross-section behaving like SM with light Higgs ?
 - Have we missed light Higgs because of unexpected decay ? (non minimal susy)
 - Interesting to measure also if a light Higgs is found
- Can we learn something from precision tests ? (W mass vs top mass)

Supersymmetry

- Sparticles produced by pairs, and decay to LSP (if R parity conserved)
- Large production of squarks and gluinos by strong interaction
- Baseline signature: Jets + Etmiss
- Can also have lepton produced in SUSY cascade
- Proper modeling of SM background (events with many jet) important

Understand Etmiss tails important

- Probably the limiting factor for early Susy discovery if squarks and gluino masses are < 1 TeV
- Many steps (noise, jet calibration,...)
- Instrumental part and Physics part
- Data driven approach:
 - o Example for physics background of Z($\rightarrow vv$)+jets: Use W($\rightarrow \mu v$)+jets as control sample

"Early" Susy discovery potential

"Ultimate" reach with higher luminosity ~ 2.5 - 3 TeV

SUSY parameters measurement

50 60 70

80

90 100

40

m(II) [GeV]

10 20 30

Some measurements could also be sensitive to SUSY particles spin

Other new physics

Many alternatives/complements to SUSY:

- Little Higgs
- Extra dimensions (large or warped or ...)
- Black Hole (quite spectacular signature...)
- New gauge bosons
- Compositness
- Heavy resonances (some extra dimensions model, Little Higgs, ...)
- Deviations from Standard Model at high Et
- Many studies done or in progress

Black Hole event: High multiplicity event with several high energy jets, photon, muon, electron

Conclusions

- Wide physics program accessible in Atlas
- Expect to find answers on key questions related to EWSB
- Lot of work required to reach the final sensitivity
 - But expect already many interesting results in the first year(s): LHC opens a large new range of energy
- Understood detector and debugged software are crucial
 - Commissioning activities have already started
 - Ongoing CSC Physics studies to prepare data analysis of the first years
 - Establish procedures to get calibration, alignment, efficiencies, background from the data
 - Also a benchmark for computing on the grid