PanTau + MVA TES tuning for High Luminosity LHC samples

Bowen Zhang, Martina Laura Ojeda

07.May.2019

Introduction

The performance of PanTau decay mode: Lara's slides

- Algorithm is stable for high number of primary vertices
- The tuning was not optimized for HL, overall efficiency decreased.
- Resolution improves for decay mode with low number of pi0
- The performance of LC TES calibration: <u>Tina's slides</u>
 - Poor resulution at low pT, even worse for high eta ->
 - Hope this could corrected by MVA TES

Reture decay mode classification -> Lara's scripts

- On this basis, tune MVA Tau Energy Scale -> Terry's scripts
- Sample: Ztautau, Eta acceptance: [0.0, 4.0]

mc15_14TeV:mc15_14TeV.147818.Pythia8_AU2CTEQ6L1_Ztautau.recon.AOD.e1836_s3142_s3143_r9589

Reconstruction Efficiency

- Performance is still stable after retuning
- 1-prong: Significant decrease
- vs RUN2

3-prong: Slightly decrease

Reconstruction Efficiency

Reconstruction Efficiency vs eta

Decay modes with no pi0 looks fine

Decay modes with piO seems not clear... need to check the yield.

6

eta resolution

Improves for decay mode with low number of pi0.

 \triangleright For those with higher number of pi0, resolution get worse.

Similar pattern for pT, eta, phi resolution. Slightly better after retune.

High Lumi sample

eta resolution

Improves for decay mode with low number of pi0

Get worse for those with higher number of pi0

Similar pattern for pT, eta, phi resolution.

mc16 pre-production sample

High Lumi sample

1p1n

MVA TES: pT resolution

Number of primary vertices

90

Baseline

Final

MVA TES: pT resolution vs eta

Resolution @68% looks fine for eta[0.0, 2.5]

▶ The PanTau TES and MVA TES seems to blow up for eta[2.5, 4.0]

• PanTau TES (true pT / PanTau pT) Classification BDTscore and eta are one of the input variables

MVA TES @ high eta is better than LC TES @ low eta

MVA TES: pT resolution vs pT

True Tau p₊ [GeV]

True Tau p_T [GeV]

The performance of PanTau decay mode bdt:

- Slightly better after the retuning
- Significance eff. Loss for 1p1n.
- Resolution improves for decay mode with low number of pi0

The performance of MVA Energy Calibration

- All algorithm performance degraded comparing with Run2
- MVA TES shows encouraging resolution.

Next to do:

- Cross check the TES plots from loki with PanTau Plotbook.
- Separate 1P, 3P, etc.

Backup

Decay Mode BDT

• 1p0n vs 1p1n BDT:

- PanTau_BDTVar_Neutral_PID_BDTValues_BDTSort_1 (Highest pi0-BDT score found in all neutral PFOs)
- PanTau_BDTVar_Neutral_Ratio_1stBDTEtOverEtAllConsts (Ratio of ET in highest pi0-BDT score neutral and pT of all core constituents)
- PanTau_BDTVar_Combined_DeltaR1stNeutralTo1stCharged (Distance in DeltaR between the leading neutral and leading charged PFO)
- PanTau_BDTVar_Charged_JetMoment_EtDRxTotalEt (Sum of ET weighted distance of charged PFOs to the tau axis)
- PanTau_BDTVar_Neutral_Shots_NPhotonsInSeed (Number of photons expected in tau candidate)
- 1p1n vs 1pXn BDT:
 - PanTau_BDTVar_Neutral_PID_BDTValues_BDTSort_2 (Second-highest pi0-BDT score found in all neutral PFOs)
 - PanTau_BDTVar_Neutral_HLV_SumM (Invariant mass of all neutral PFOs)
 - PanTau_BDTVar_Neutral_Ratio_EtOverEtAllConsts (Ratio of all neutral ET to the pT of all core constituents)
 - PanTau_BDTVar_Basic_NNeutralConsts (Number of neutral PFOs)
 - PanTau_BDTVar_Neutral_Shots_NPhotonsInSeed
- 3p0n vs 3pXn BDT:
 - PanTau_BDTVar_Neutral_Ratio_EtOverEtAllConsts PanTau_BDTVar_Neutral_PID_BDTValues_BDTSort_1
 - PanTau_BDTVar_Charged_StdDev_Et_WrtEtAllConsts (Ratio of standard deviation of PFO(+-) ET values and ET of all core PFOs)
 - PanTau_BDTVar_Neutral_Shots_NPhotonsInSeed PanTau_BDTVar_Charged_HLV_SumM (Mass of charged system)

н	False
V	False
NTrees	400
MinNodeSize	"0.1%"
BoostType	"Grad"
Shrinkage	0.10
UseBaggedBoost	True
BaggedSampleFraction	0.6
nCuts	200
MaxDepth	6
NegWeightTreatment	"IgnoreNegWeightsInTraining"

Bdt configure

MVA TES BDT

- BDT Variables:
 - Number of (pile-up) vertices
 - Average interactions per crossing
 - Energy weighted cluster variables:
 - Centre shower depth
 - Second moment in λ
 - First moment in E/V
 - Presampler energy fraction
 - EM Probability
 - pT(combined) = Non-MVA TES pT
 - pT(constituent) / pT(combined)
 - pT(LC) / pT(combined)
 - eta(constituent)
 - Number of associated tracks
 - Upsilon" = [E(charged PFOs) E(neutral PFOs)] / [E(charged PFOs) + E(neutral PFOs)]
 - PanTau BDT scores:
 - 1p0n vs 1p1n
 - 1p1n vs 1pXn
 - 3p0n vs 3pXn
- BRT Regression Target:
 - pT(true,vis) / pT(combined)
- BRT Configuration:
 - BoostType = Grad
 - NTrees = 2000
 - <u>MaxDepth</u> = 5
 - Shrinkage = 0.1
 - <u>UseBaggedBoost</u> = true
 - <u>BaggedSampleFraction</u> = 0.5
 - nCuts = 200
 - 0

Energy resolutions (in all decay modes)

