

班勇,北京大学,2019年7月1日

内容:

- ► CMS-GEM项目整体进展情况
- ▶ 前端电子学板GEB: GE1/1 GEB在中国的生产测试;及GE2/1 GEB的设计与研制
- ▶ 北大实验室为成为GE2/1及ME0探测器批量生产组装测试基地 (production site) 之一而进行的升级、改建和探测器研制进展
- ▶ 清华组玻璃MRPC后续研究进展

GE1/1 GEB在中国的生产测试(王珂、沈巧蓉、薛志华等 + 中山大学组)

• GE1/1前端电子学板在中国深圳鑫诺捷公司生产。2018年开始,中山大学组 (尤郑昀等)参加GEB板测试工作

改进大面积GEB板的平整度:

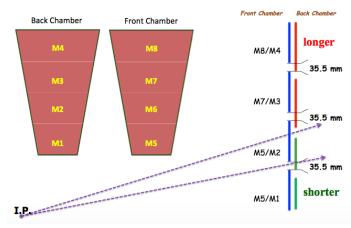
- 大面积PCB板在高温炉中焊接 时会造成弯曲。
- 研制了人造石夹具,大大提高 了平整度,大大CMS-GEM要求

UNITS OF MEASUREMENT: mm (millimeter)

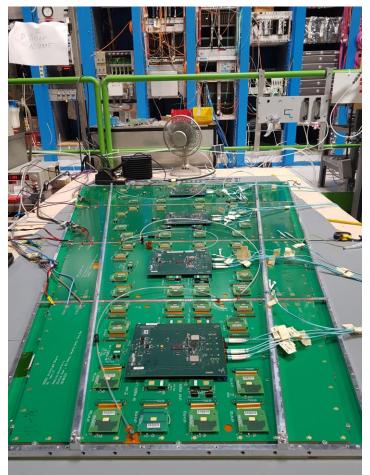
	DATE: 2018.11.3				RESULT: pass			NOTE:	
	Smalle	er side	Bigge	r side	Center				
	Left	Right	Left	Right	(H20)		Largest	(positi on)	
GEB: 1W	0.37	1.09	0.06	0.28	0.44		2.16	L1-L2	
GEB: 2W	0.02	0.07	0.03	0.05	0.13		1.50	L1-L2; R1-R2	Measured the height of the upper side of
GEB: 3W	0.26	0.23	0.05	0.23	0.26		1.61	L3-L4; R3-R4	the board, and then minus the thickness of
GEB: 4W	0.41	1.67	0.24	1.41	0.89		1.96	BS-L4	the board(1.2 mm)
GEB: 5W	0.97	0.07	0.00	0.36	0.25		2.99	BS-L4	,
					(H28)				
GEB: 1N	0.24	0.51	0.24	0.51	0.23		0.90	L2	
GEB: 2N	0.05	0.19	0.05	0.19	0.31		1.06	L2-L3	
GEB: 3N	0.00	0.36	0.00	0.36	0.16		0.54	L1-L2	
GEB: 4N	0.01	0.05	0.01	0.05	0.04		1.43	SS	
GEB: 5N	0.24	0.00	0.24	0.00	0.13		1.35	R1	
GEB: 6N	0.00	0.76	0.00	0.76	0.18		0.86	SS	
GEB: 7N	0.64	0.87	0.64	0.87	0.15		2.18	SS	
GEB: 8N	0.36	0.24	0.36	0.24	0.00		0.52	L2	
GEB: 9N	0.40	1.34	0.40	1.34	0.32		1.34	R1	
GEB: 10N	0.40	0.62	0.40	0.62	0.06		0.62	R1	
NOTE:									SIGNATURE:

• 至2019年6月,已完成90%GE1/1 GEB板的生产测试

日期	型号	代码	类型	编号	数量
2018.12.04	GEBv3-s-wide	CH0239A	В	15415	6
2018.12.04	GEBv3-s-narrow	CH0239A	В	15416	6
2018.12.04	GEBv3b-l-wide	CH0239A	В	15417	6
2018.12.04	GEBv3b-l-narrow	CH0239A	В	15418	6
2018.12.11	GEBv3b-l-wide	CH0239A	BS	14012	40
2018.12.11	GEBv3b-l-narrow	CH0239A	BS	14013	40
2019.01.03	GE21_M3_V1	CH0239A	BS	15663	5
2019.01.08	DC-DC-Converter	CH0239A	BS	15692	100
2019.01.16	DC-load5	CH0239A	В	15756	50
2019.02.23	GEBv3-s-wide	CH0239A	BS	14010	40
2019.03.23	GEBv3-s-narrow	CH0239A	BS	14011	40
2019.03.29	GEBv3b-l-wide	CH0239A	BS	14012	40
2019.03.29	GEBv3b-l-narrow	CH0239A	BS	14013	40
2019.04.10	GE21_M4_V1	CH0239A	BS	16337	5
2019.04.25	M4-dlb	CH0239A	В	16403	5
2019.05.15	GE21_M5_V1	CH0239A	BS	16480	6



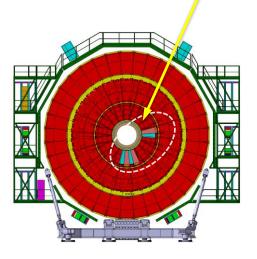
GE2/1 GEB的设计研发(薛志华、王珂等)

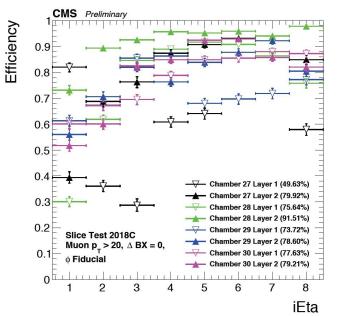

→薛志华报告

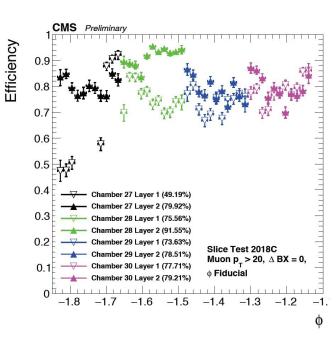
- GE2/1 (2019-2022年) 探测器有两种型号, GEB共分成8种型号 (M1-M8) 的八层GEB板, 北大组负责设计研发。
- 至2019年六月,已完成M1-M5 GEB的第 一版设计,每种型号生产了5-6块样机, 分别运送到美国Rice大学、CERN及北 大进行测试,结果满足设计要求。

GE2/1 Superchamber

在Rice大学组装完成的M1-M4 GEB正在进行测试

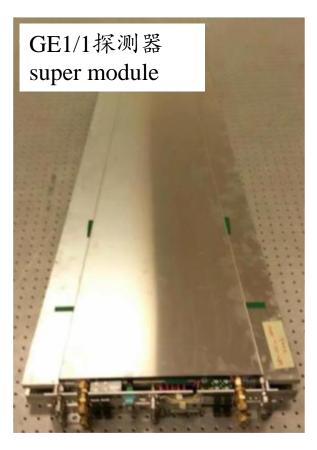


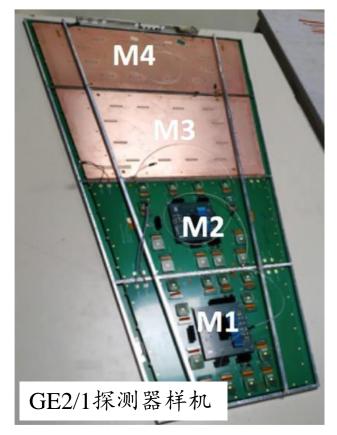



安装在CMS上的5个GE1/1模块性能测试(黄璜等)

用PRA (Prompt Response Analysis) 方法分析GEM测试模块记录的对撞束联机测试数据

 → 黄璜报告




效率在eta和phi方向的分布

在CERN进行的GEM探测器组装测试(陈诚、卢梦、吕旭东、黄迁明、 Andrew M. Levin等) → 陈诚报告

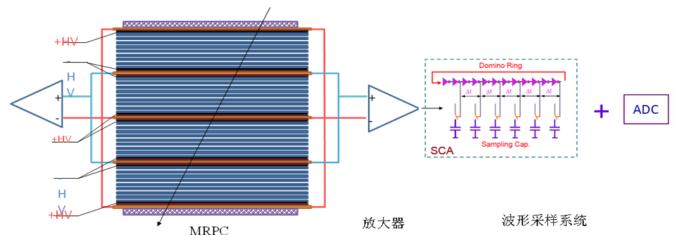
- 参加GE1/1探测器super module的组装测试,宇宙线测试(QC8)等
- 参加GE2/1 GEM探测器试组装和组装测试流程设立。

本地实验室为成为production site 作的准备升级

(梁子寒, 蒋楚翘, 章立诚, 田勇, 姚金鹏, 马宏骥等)

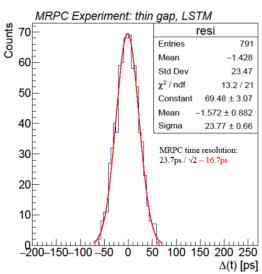
- · 实验室改建基本完成,为GEM各测试步骤准备的各设备和电子学器件配备完成。
- 小CMS-GEM样机装配完成,QC2(GEM膜测试)、QC3(GEM气密性测试)、QC4 (GEM电压电流噪声测试)、QC5(GEM增益、响应均匀性测试)软硬件调试大部完成,部分QC5步骤正在进行。

课题3. CMS 端盖μ子探测器升级-MRPC



- ▶ 2018年CMS合作组确定端部内圈第3、4站升级采用iRPC(改进的电木RPC)技术
- ▶ 按照项目目标,本年度清华组继续进行提高MRPC性能的前沿研究。针对高亮度物理实验(如Jlab-SoLID)高计数率,超高时间分辨的需求,研制出时间分辨优于20ps的MRPC:
 - 将深度学习方法应用于MRPC时间重建,提高了MRPC的时间分辨率,最好时间分辨达到16ps
 - 研究寻找适合于高计数率MRPC的新型环保气体

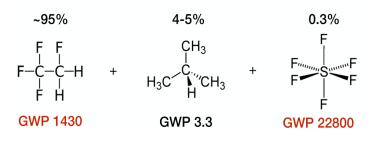
课题3. CMS 端盖μ子探测器升级-MRPC


超高时间分辨MRPC研制

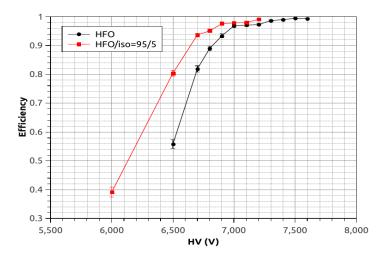
▶ MRPC结构: 气隙宽度105微米, 4个Stack共32个气隙,

玻璃厚度: 0.5mm, 差分读出

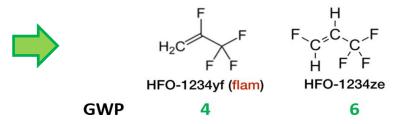
- ▶ 读出电子学采用高速前放+SCA高速波形采样
- ▶ 时间分析方法:神经网络
- ▶ 宇宙线测试得到时间分辨达16ps

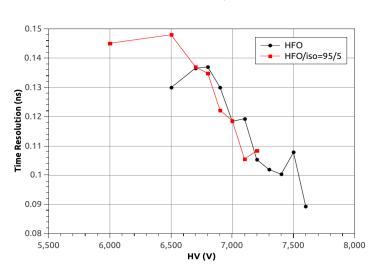


课题3. CMS 端盖µ子探测器升级-MRPC



MRPC新型环保工作气体研究:


在国际上对含氟气体管制的背景下,寻找低GWP值工作气体势在必行:


现有工作气体的GWP

高计数率MRPC在两种环保气体下的效率坪

环保工作气体的GWP

高计数率MRPC在两种环保气体下的时间分辨

总结:

1,本年度完成了任务书预定的年度计划

18年 6月 19年 5月	GEM 项目:继续研究小面积 GEM 及 FTM 微结构探测器,制作大面积 GEM 及 FTM 探测器样机并进行强辐射环境下束流测试。参与在 CERN 的 GE1/1 探测器组装测试及安装调试。 MRPC 项目:根据宇宙射线和束流测试结果对 MRPC 进行定型设计。进行束流实验,同时进行老化实验,确保探测器的长期稳定运	掌握大面积 GEM 探测器制造工艺。优化 MRPC 设计。	GEM 探测器样机, 撰写、发表 GEM 及 MRPC 探测器研 制论文.
	行。进行探测器的批量生产准 备。		

2. 课题完成情况:

- 按CMS-GEM升级项目整体计划, GE1/1 GEB批量生产测试完成良好, GE2/1 GEB设计研制完成大半,将按计划完成。实验室升级、探测器QC测试按计划进行。
- CMS-MRPC样机已经达到任务书指标。

本年度论文发表情况:

- Lyu Pengfei, Wang Yi. Development and performance of self-sealed MRPC. JINST, 12, C03055
- Lyu Pengfei, Han Dong, Wang Yi, et al. Performance study of a real-size mosaic high-rate MRPC.
 2018 JInst. 13 P06016
- Wang Fuyue, Ultimate position resolution of pixel clusters with binary readout for particle tracking, NIMA 899(2018) 10-15
- Wang Fuyue, Han Dong, Wang Yi, et al. The study of a new time reconstruction method for MRPC read out by waveform digitizer, NIMA 2018 (已接收)
- S. He, Q. Huang, H. Qiao, D. Wang, Y. Ban, Simulation Study of the Performance of New Micro Pattern Gaseous Detectors, Radiation Detection Technology and Methods (2018) 2: 21

3. 下一步工作计划:

- 至2019年10月前,完成CMS-GEM前端电子学板GE2/1 GEB剩余三种型号M6、M7、M8的设计和样机生产。根据测算情况修改设计,进行第二版样机研制。
- 2020年上半年全部GE2/1 GEB设计定型, 开始批量生产。
- 2019年10月前,完成GE2/1探测器结构部件(如FR4框架等)在中国的试生产和检测,确定北大组承担的探测器部件生产任务。
- 2019年底完成GEM组装测试所有QC步骤的调试,按要求请CMS-GEM组专家来实验室核查。各项指标通过后,2020年开始GE2/1探测器批量组装测试。
- CMS-MRPC探测器:继续进行极高时间分辨探测器研制及环保气体测试。

问题:

一旦GE2/1 GEB及结构部件批量生产开始,在基金委经费还没到位的情况下困难较大。

4. 人才和队伍:

- 中山大学(尤郑昀组)和清华大学(胡震组)CMS-GEM项目,目前已开始参加 GEB生产测试工作。
- 北大组参与人员情况没有变动。除本地实验室工作人员外,先后有10余名名研究生在CERN或其它国外实验室长期或短期、全部或部分时间参与本项目。目前引进了两名外籍博士后在CERN部分时间参与本项目。王大勇老师成为CMS-GEM电子学组会召集人。
- 2018年本项目毕业一名博士生(论文部分工作)和一名硕士生。

5.经费使用和档案管理:

- 经费使用正常。目前CMS-GEM经费已使用约70%。
- 每周三下午本地实验室有一次组会,周一、周三和周四晚上与CERN连线开电子学、探测器等专题进度会。各组会报告已建立网页存档。年度进展报告、科技报告等已提交。