

Status of the Full size pixel chip for highrate CEPC Vertex Detector

Wei Wei On behalf of the CEPC MOST2 Vertex detector design team

2019-5-31

Outline

- Motivation of the MOST2 Vertex detector design
- Specification
- Limitation of the existing CMOS sensors towards the highrate CEPC Vertex Detector
- Key improvement for fast readout
- Design status & schedule
- Issues & concerns

CEPC Vertex Detector Design

Detector Requirements

- Efficient tagging of heavy quarks (b/c) and τ leptons
 - → impact parameter resolution

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{3/2}\theta} (\mu m)$$

- Detector system requirements:
 - σ_{SP} near the IP: $<3 \mu m$ \longrightarrow ~16 μm pixel pitch
 - material budget: $\leq 0.15\% X_{o}/layer \longrightarrow$ power consumption
 - first layer located at a radius: ~1.6 cm
 - pixel occupancy: $\leq 1 \%$

power consumption < 50mW/cm², if air cooling

 \rightarrow ~ μ s level readout

used

Target: fine pitch, low power, fast pixel sensor + light structure

Nov.7 $^{\text{th}}$, 2017

Status of CEPC vertex detector R&D in China

4

 Ref: Status of vertex detector, Q. Ouyang, International workshop on CEPC, Nov. 7th 2017

as	eline	e Pix	el D	ete	ctor	Layout	<u>∠25 cm</u>
				3-lay	ers o	f double-sided p	bixel sensors
							 ILD-like layout Innermost layer: σ_{SP} = 2.8 μm
		-					Polar angle $\theta \sim 15$ degrees
						Implem	ented in GEANT4 simulation framework (MOKKA)
	*				/		CMOS pixel sensor (MAPS)
		R(mm)	z (mm)	$ cos\theta $	$\sigma(\mu m)$	Readout time(us)	Integration diode N+/epi N+ p well N+ STI P+ N well P+ STI N+ N well P+ Deep P well Deep P well Deep P well Deep Characteria
er/	Layer 1	16	62.5	0.97	2.8	20	Epi
	Layer 2	18	62.5	0.96	6	1-10	Sub Minus voltage 0~ -6V
		37	125.0	0.96	4	20	
r	Layer 3				1 1		
	Layer 4	39	125.0	0.95	4	20	Integrated sensor and readout electronics on the same silicon bulk with "standard" CMOS process:
er (39 58 60	125.0 125.0 125.0	0.95 0.91 0.90	4	20 20 20	Integrated sensor and readout electronics on the same silicon bulk with "standard" CMOS process: - low material budget,

Ladder Prototype

Silicon Vertex Detector Prototype – MOST (2018–2023)

Keep it simple for baseline design

3-lavers

same size

same chip

Sensor technology CMOS TowerJazz

- + Design sensor with large area and high resolution
- + Integration of front-end electronic on sensor chip

Benefit from MOST 1 research program

3-layer sector

L3

Integrate electronics readout

Design and produce light and rigid support structures

• Ref: Introduction to the Pixel MOST2 Project, Joao Costa, 2018.6

L1

L2

L3

Previous CMOS pixel sensor prototypes

Prototype	Pixel pitch (µm²)	Collection diode bias (V)	In-pixel circuit	Matrix size	R/O architecture	Status
JadePix1	33 × 33 16 × 16	< 1.8	SF/amplifer	96 × 160 192 × 128	Rolling shutter	In measurement
JadePix2	22 × 22	< 10 V	amp., discriminator	128 × 64	Rolling shutter	In measurement
MIC4	25 × 25	reverse bias	amp., discriminator	112 × 96	Asynchronous	In measurement

All prototypes in TowerJazz 180 nm process

- Slides from Y. Zhang: "IHEP CMOS pixel sensor activities for CEPC", 2018.3
- Y.P. Lu, "Pixel design and prototype characterization in China", The 2018 International Workshop on the High Energy Circular Electron Positron Collider

Main specs of the full size chip for high rate vertex detector

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$

For Vertex	Specs	For High rate Vertex	Specs	For Ladder Prototype	Specs
Pixel pitch	<25µm	Hit rate	120MHz/chip	Pixel array	512row×1024col
TID	>1Mrad	Date rate	3.84Gbps triggerless ~110Mbps trigger	Power Density	< 200mW/cm ² (air cooling)
		Dead time	<500ns for 98% efficiency	Chip size	~1.4cm×2.56cm

From the CDR of CEPC

Limitation of the existing CMOS sensors

- None of the existing CMOS sensors can fully satisfy the requirement of high-rate CEPC Vertex Detector
- Two major constraints for the CMOS sensor
 - Pixel size: should be < 25um* 25um, aiming for 16um*16um
 - Readout speed: bunch crossing @ 40MHz
- TID is also a constraint, but 1Mrad is not so difficult

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA	JadePix/ MIC4 (MOST1)
Pixel size	v	Х	v	v
Readout Speed	Х	~	Х	Х
TID	X (?)	✓	 	To be tested

New proposed architecture for MOST2

- Similar to the ATLAS ITK readout architecture: "column-drain" readout
 - Priority based data driven readout
 - Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
 - Dead time: 2 clk for each pixel (50ns @40MHz clk), negligible compared to the average hit rate
- 2-level FIFO architecture
 - L1 FIFO: In column level, to de-randomize the injecting charge
 - L2 FIFO: Chip level, to match the in/out data rate between the core and interface
- Trigger readout
 - Make the data rate in a reasonable range
 - Data coincidence by time stamp, only the matched event will be readout

Pixel architecture – Analog

- Digital-in-Pixel scheme: in pixel discrimination & register
- Pixel analog is derived from ALPIDE (and benefit from MIC4 for MOST1)
 - As most of ATLAS-MAPS sensors' scheme
- Biasing current has to be increased, for a peaking time of ~25ns
 - Now in MOST1 ~2us peaking time was designed, too slow for 40MHz BX
- Consequence:
 - Power dissipation increased
 - Modified TJ process for ATLAS has to be used
 - > With faster charge collection time, otherwise only fast electronics is of no meaning

- Two parallel digital readout architectures were designed:
 - Scheme 1: ALPIDE-like: benefit from the proved digital readout in small pixel size
 - Scheme 2: FE-I3-like: benefit from the proved fast readout @40MHz BX (ATLAS)

Design effort aiming for 40MHz BX on digital

- ALPIDE-like scheme:
 - Fast-Or bus added to record the column hit time stamp
 - Boosting speed of the AERD (Address-Encoder & Reset-Decoder)
 - > To shift the Fast-Or by a half of the clock cycle

- FE-I3-like scheme:
 - Simplify the pixel cell logic
 - All the logic gates were re-designed with fully customized layout
 - For smaller pixel size

Full chip periphery logic design

- Main Functionality:
 - Trigger/Triggerless readout mode compatible
 - Data coincidence and trigger window logic
 - Two level FIFOs for hit derandomization
 - High speed serialization for data readout
 - > 4Gbps data rate capability

From X.M. Wei for the CEPC Vertex MOST2 group meeting

- Other necessary blocks
 - Slow control of the pixel array and full chip via SPI interface
 - Bias generation by current- and voltage- DACs
 - Clock management: Phase Lock Loop and serializer
 - Power management: LDOs for on-chip low ripple power supply
 - High speed interface: CML & LVDS Drivers

Team organization

Slides from Y. Zhang, Satellite meeting of MOST2 in Oxford, 2019.4

- Design team:
 - IHEP, SDU, NWPU, IFAE & CCNU
 - Biweekly/weekly video design meeting on chip design (convened by IHEP)

٠

Institutes	Tasks	Designers
IHEP	Full chip modeling & simulation Pixel Analog, TCAD simulation High speed interface: PLL + Serializer	Wei Wei, Ying Zhang Xiaoting Li, Weiguo Lu, Mei Zhao
CCNU/IFAE	Pixel Digital	Tianya Wu, Raimon Casanova
NWPU	Periphery Logic, LDO	Xiaomin Wei, Jia Wang
SDU	Bias generation	Liang Zhang

- Chip characterization
 - Test system development: SDU & + other interested parties
 - Electrical test: all designers supposed to be involved in the related module + other interested parties
 - Irradiation test: X-ray irradiator + beam line

Current Status and recent schedule

- **Design Status**
 - The design and layout of the first MPW1 is almost finished
 - Will be submitted in June
- An internal review for the chip design was organized on April 30
- First MPW tapeout
 - Shuttle booked for May 13th via IFAE
 - One block for 5mm×5mm
 - Organized with a full functional pixel array (small scale), plus other test blocks (less critical)
 - A 64×192 Pixel array + Periphery + PLL + Serializer
 - Bias generation included
 - I/O arranged in one edge, as the final chip

• MOST2 project: May 2018 ~ April 2023 (5 years)

- Chip design plan (3 MPW & 1 engineering run in 3 years)
 - Year 1: complete the preliminary design of the main functional modules of the sensor chip, submit the 1st MPW prototype, complete the design of all the functional modules
 - Year 2: test the first prototype, integrate all the modules in a fully functionality chip, submit the 2nd MPW prototype, complete the 2nd prototype test
 - Year 3: solve the detected bugs and finish circuit modification & improvement, fabricate and test the 3rd MPW prototype, complete the full size chip design and tapeout (engineering run)
 - Slides from Y. Zhang, Satellite meeting of MOST2 in Oxford, 2019.4

٠

Issues & concerns for the CMOS Sensor for CEPC

- Process Issues
 - Uncertainty of using Modified TJ process for fast timing
 - Mod TJ is necessary for fast timing from sensor side, otherwise only a fast electronics is meaningless
 - Mod TJ is somewhat protected by CERN, even not available from Strasbourg IPHC
 - > Recently saw some chance for availability from IFAE, still in contact
 - Non-stable schedule of MPW shuttle
 - ➢ Not easy to get access
 - No way to get access by ourselves from Chinese ICC agent
 - » Internal permission is required from TJ
 - Have to share the area & schedule with others (CERN, IPHC), if via IPHC as the past
 - » Then we cannot fully control the project schedule
 - > Partially solved by the help of IFAE
 - as a regular customer under the name of IFAE
 - not sure about the stability of the tunnel
 - » still get impact from other big customers (maybe CERN), the shuttle in May was cancelled

Issues & concerns for the CMOS Sensor for CEPC

- Concerns on the MOST2 project
 - Schedule is very tight
 - > 4.5 years to get a ladder, less than 3 years for a full size ASIC (Engineering run)
 - 1 year had passed
 - Project budget is limited for a second engineering run
 - > Only 3 MPW and 1 engineering run was scheduled in budget
 - Not a best schedule but we have to:
 - ➤ All blocks ready in 1st MPW → all functionality in 2nd → full size engineering run (and have to be successfully designed!!)
 - Every MPW should be mostly successful for the next
 - Some design have to go in parallel before the test results are achieved
 - > Actually not enough time for the 3rd MPW
 - High risk and great challenge for ASIC design
 - Especially with challenging requirements from specs
 - Only 1 engineering run before the assembly is also very challenge, not the usual way as other ASICs
 - » One example is MIMOSA have > 30 versions
 - » One more engineering run from somewhere else may greatly help to get a reliable ladder

Issues & concerns for the CMOS Sensor for CEPC

- Few steps in advance may help for the future:
 - To find a Chinese domestic foundry to begin a co-design CIS process
 - > Reliable tunnel, regular MPW shuttle
 - Then fully controllable and speed-up-able R&D schedule
 - Especially in the current international circumstances
 - ➤ all parameters can be accessible
 - Can do precise and full TCAD simulation
 - Now all parameter are based on experience (and guess)
 - Process can be self-customized
 - CCNU is collaborating with GSMC(上海宏力)
 - > We are not very involved, due to the limited man-power & budget
 - > We have doubt on GSMC
 - > We are trying to recover with (and aiming at) SMIC
 - Maybe good to try other design approaches
 - HVCMOS approach is also worth to try (and we have some early attempts)
 - ➢ But man-power is always a question...

Summary

- Challenge considering the real CEPC's requirement
 - Pixel size
 - High rate & power dissipation
 - None existing chip can fully satisfy the CEPC Vertex
- New proposed architecture
 - Modified column-drain readout with time stamp for each hit
 - Parallel verification with modified ALPIDE readout
 - Trigger/Triggerless mode compatible
- Chip design for MOST2 Vertex detector is progressing almost as scheduled
 - First chip submission will be delivered very soon

Thank you!

The ALPIDE readout architecture

Fig. 2. Block diagram of the ALPIDE pixel cell.

Table 1

General requirements for the pixel sensor chip for the Upgrade of the ALICE Inner Tracking System. In parentheses: ALPIDE performance figure where above requirements.

Parameter	Inner barrel	Outer barre
Chip dimensions (mm × mm)	15×30	
Silicon thickness (µm)	50	100
Spatial resolution (µm)	5	10 (5)
Detection efficiency	>99%	
Fake hit probability (evt^{-1} pixel ⁻¹)	<10 ⁻⁵ (<< 10 ⁻⁵)	
Integration time (µs)	<30(10)	
Power density (mW/cm ²)	<300(~35)	<100(~20)
TID radiation hardness ^a (krad)	2700	100
NIEL radiation hardness ^a (1 MeV n _{eq} /cm ²)	1.7×10^{13}	1×10^{12}
Readout rate, Pb–Pb interactions (kHz)	100	

 $^{\rm a}$ 10 \times the radiation load integrated over the approved program (6 years of operation).

- The ALPIDE architecture, as MOST1 referenced, uses strobe signal as the "trigger"
- However, the readout rate is only ~100kHz, and more like frame readout

G. Aglieri Rinella et al. NIM. A 845 (2017) 583-587

Discussion on ALPIDE – analysis & conclusion

- ALPIDE is not fully compatible with CEPC vertex & other high hit rate, high bunch crossing applications (like ATLAS)
- 1. Bunch crossing too high
 - Now bunch crossing at 100~200kHz (i.g. frame rate)
 - While CEPC 1.5MHz (Higgs) ~ 40MHz(Z pole)
 - > Not possible for the chip level frame-like readout, because:
 - At least 120MHz clk has to run at periphery-column level (3pixel per hit)
 - ALPIDE is "triggerless", no further data reduction, data rate too high (*32bits per hit)
- 2. Pixel analog should be (much) faster
 - now 2us peaking, 10us duration
 - CEPC: "Hit rate: 120MHz/chip, or <u>225Hz/pixel (average)</u>, <u>120kHz/col (ave)</u>", Meaning every 8.3us, the column will be hit, however, very unlikely to be at the same pixel
 - For CEPC, peaking time should be much faster (25ns level)
 - Otherwise leads to too large delay for the arrival time stamp (although can be covered by the configurable trigger match error)
 - For CEPC, duration should also be faster
 - > Better ends earlier than 8.3us, avoiding continuous hit in the same pixel
 - Larger power expected than ALPIDE

From vertex detector MOST1 projects towards MOST2

- To build a prototype ladder mounted with silicon pixel sensors
 - Spatial resolution 3-5 μm
 - TID 1 Mrad
- Compared with MOST1 project target:
 - Pixel sensor prototype design
 - Spatial resolution 3-5 μm
 - Power consumption <100 mW/cm2</p>
 - Integration time 100 μs
- MOST1 focused on key performance, however we should focus more on a full function chip that can work in a prototype system
- Baseline design for MOST2:
 - Reuse the pixel design from MOST1, with necessary modification
 - Focus on full chip readout architecture design, esp. fast readout and full data readout chain

The full size chip for high rate vertex detector

From the CDR of CEPC

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
- The hit rate: Higgs 11 MHz/cm², W 36MHz/cm², Z 24 MHz/cm²
- The chip should be capable with 36MHz/cm² hit rate
- Suppose the pixel array size is 512rows*1024cols (ALPIDE), 25um*25um pixel size, and 1.28cm*2.56cm pixel array area
- → Hit rate: 120MHz/chip, or <u>225Hz/pixel (average)</u>, <u>120kHz/col (ave)</u>
 - Meaning every 8.3us, the column will be hit, however, very unlikely to be at the same pixel
- In order to readout without data loss, time stamp has to be added for every hit
 - According to the readout speed of MOST1(10~100us), it is not capable for this large hit rate
 - Also MOST1 chip design (MIC4) is currently base on ALPIDE readout architecture, which is still more or less frame-based, not fully capable with trigger readout

Increased data rate as for the real CEPC

- Every hit has 27~32bits (async): col addr 9bits (512), row addr 10bits (1024), time stamp ~8bits (suppose 40MHz clock, covers 6.4us time region)
- If triggerless, all the raw hit data should be sent off chip
 - The data rate: ~32bits*120MHz= 3.84Gbps, possible, but risk too high in the current stage
- If trigger, on-chip buffer should be designed
 - Suppose trigger latency 3us. Trigger rate was said 20kHz~50kHz
 - Triggered data rate:
 - > 2.5/hits/bunch/cm²*3pixels/hit*1.28cm*2.56cm*32bit=786bit/bunch/chip
 - > W@20kHz trigger rate -> 15.7Mbps/chip as the triggered data rate
 - In order to cover any trigger error(mismatch of the edge in different column, time walk of the hit peaking...)
 - A trigger window can be set, so that the data within the ±σ of the trigger time stamp can all be read out
 - In this way, the readout data rate will be (suppose trigger window of ±3LSB time stamp):
 - 15.7Mbps * 7 ~ 110Mbps
 - Can still be read out by a single LVDS interface

Other necessary modification for the pixel cell

Simulation condition: Cd = 2.5 fF, Qin = 50 e⁻ - 6k e⁻, 3 different IBIAS

Delay of leading edge vs. input charge

- Pixel analog in the same architecture as
 ALPIDE (and benefit from MIC4 for
 MOST1) but with different parameters
 - Aiming especially for fast readout
- Biasing current has to be increased, in order to achieve a peaking time of ~25ns
 - Otherwise there will be timing error for the event, and has to open a trigger window in this case
 - Now in MOST1 ~2us peaking time was designed, which is too slow for 40MHz BX

Consequence:

- Power dissipation increased:
 - bias@440nA with peaking time 29ns, but 138mW/cm² for analog
 - Total power density may exceed 200mW/cm²
- Modified TJ process for ATLAS has to be used
 - With faster charge collection time, otherwise only fast electronics is of no meaning