A global analysis approach

A single parameter quantifies both Higgs Br precision and detector performance

P. Shen and G. Li

CEPC day, 2019-05-31, IHEP

Outline

- Motivation
- Method
- Some numerical results with toy MC
- Summary & Plan

- Competition from both HL-LHC and FCC-ee
- FCC-ee
- ATLAS-CMS extrapolation range from 2 - 4%, with the exception of that on $B^{\mu\mu}$ at 8% and on $B^{Z\gamma}$ at 19%.

We possess what the LHC lacks (人无我有)

- Tagging method, absolute/model-independent
- All Higgs decays accessible except e and uds
- Multinomial distribution: statistical constraint

Detector design & Optimization

Multi-purpose optimization: a bunch of benchmarks — A single parameter is favored, which means single-purpose optimization

Take the simplest case as an example -2 decay modes

Efficiency matrix Based on MC, no dependence on Br's

A produced final state reconstructed as final state

Measurement is DEMODULATION All knowns on the right Goal: solve N and minimize its uncertainty

Two decays, neglect other background: p+q=1 — binomial distribution

Individual measurementsGlobal measurement
$$\sigma_{n_1} = \sqrt{N\epsilon_{11}}$$
 $\sigma_{n_1} = \sqrt{Np(1-p)\epsilon_{11}}$ $\sigma_{n_2} = \sqrt{N\epsilon_{22}}$ $\sum N_i = N$

Based on text book, or <u>https://en.wikipedia.org/wiki/Binomial_distribution</u> https://en.wikipedia.org/wiki/Multinomial_distribution

Decay – multinomial distributions

Further the full covariance

$$V = egin{pmatrix} Npq & -Npq \ -Npq & Npq \end{pmatrix}$$

100% anti-correlated between the two decays! This can be used in data analysis to improve precisions.

Successful examples

- Precision measurement of the D^{*0} decay branching fractions by BESIII, Phys.Rev. D91 (2015) no.3, 031101
- Branching ratios of tau decays by ALEPH, Physics Reports 421 (2005) 191–284

Let's see how it happens

$$ec{\sigma}_n = \left(egin{array}{c} ec{\sigma}_{n_1} \ ec{\sigma}_{n_2} \end{array}
ight) ,$$

$$\sigma_{n_i}^2 = \vec{\sigma}_{n_i} \cdot \vec{\sigma}_{n_i}, \ \sigma_{n_{ij}} = \sigma_{n_{ji}} = \sigma_{n_1} \sigma_{n_2} \rho_{ij} = \vec{\sigma}_{n_i} \cdot \vec{\sigma}_{n_j},$$

$$\rho_{ij} = \frac{\vec{\sigma}_{n_i} \cdot \vec{\sigma}_{n_j}}{\sigma_{n_1} \sigma_{n_2}},$$

Matrix: compact and easy to expand to higher dimension

$$\Sigma^{n} = \vec{\sigma}_{n} \vec{\sigma}_{n}^{T} = \begin{pmatrix} \vec{\sigma}_{n_{1}} \\ \vec{\sigma}_{n_{2}} \end{pmatrix} \begin{pmatrix} \vec{\sigma}_{n_{1}} \\ \vec{\sigma}_{n_{2}} \end{pmatrix}^{T}$$
$$= \begin{pmatrix} \sigma_{n_{1}}^{2} & \sigma_{n_{12}} \\ \sigma_{n_{21}} & \sigma_{n_{2}}^{2} \end{pmatrix}$$

Space transformation n—>N

 $ec{\sigma}_N = E^{-1}ec{\sigma}_n$

$$J_{Nn} = E^{-1} = rac{1}{|E|} egin{pmatrix} \epsilon_{22} & -\epsilon_{12} \ -\epsilon_{21} & \epsilon_{11} \end{pmatrix} \equiv rac{J_N}{|E|}$$

Space transformation N—>B

$$J_{BN} = rac{1}{N^2}igg(egin{array}{cc} N_2 & -N_1 \ -N_2 & N_1 \ \end{pmatrix} = rac{J_B}{N^2}$$

• Features

 \mathbf{V} Variance of B proportional to $1/(N^4|\mathbf{E}|^2)$

№ N⁴ : statistical power

E|² proportional to the performance of Detector x Reconstruction x Analysis

Same uncertainties for both two Br's

$$ec{\sigma}_B \!= J_{BN} J_{Nn} ec{\sigma}_n \!= rac{igg(egin{array}{c} n_2 ec{\sigma}_1 \!-\! n_1 ec{\sigma}_2 \ -\! n_2 ec{\sigma}_1 \!+\! n_1 ec{\sigma}_2 igg) \ N^2 |E| \end{array}$$

$$egin{split} \Sigma_B &= rac{ec{\sigma}_B ec{\sigma}_B^T}{N^4 |E|^2} \ &= rac{[J_B J_N ec{\sigma}_n] [J_B J_N ec{\sigma}_n]^T}{N^4 |E|^2} \ &= rac{(n_2 \sigma_{n_1} + n_1 \sigma_{n_2})^2}{N^4 |E|^2} igg(egin{array}{c} 1 & -1 \ -1 & 1 \end{pmatrix} \end{split}$$

Three or more decay modes

Similar features as N=2

Numerical results with toy MC

On backgrounds

- Two type of backgrounds
 - Non-uuH backgrounds: subtracted by fitting, enlarging statistical uncertainty of n_i
 - uuH backgrounds(cross talk): the efficiency matrix dealing with them

➢N and n_i

- 9 Higgs decays accessible at CEPC
- Di-muon, Di-photon, and gamma Z are tiny: 0.02%, 0.23%, and 0.15%, respectively
- cc contaminated by bb due to large bb Br
- ZZ important for Higgs Width

Solve N_i by minimizing the chi² with constraint

$$\chi^2 = \sum_i rac{(\sum \epsilon_{ij} N_j - n_i)^2}{\sigma_{n_i}^2} + rac{(\sum_l N_l - N)^2}{\sigma_N^2}$$

Higgs -> cc, bb, mm, tt, gg, aa, aZ, ZZ, WW 1 2 3 4 5 6 7 8 9

<i>,</i> ,		,									,
$\begin{pmatrix} n_1 \end{pmatrix}$		$\left(\epsilon_{11} \right)$	ϵ_{12}	ϵ_{13}	ϵ_{14}	ϵ_{15}	ϵ_{16}	ϵ_{17}	ϵ_{18}	ϵ_{19}	(N
n_2		ϵ_{21}	ϵ_{22}	ϵ_{23}	ϵ_{24}	ϵ_{25}	ϵ_{26}	ϵ_{27}	ϵ_{28}	ϵ_{29}	N
n_3		ϵ_{31}	ϵ_{32}	ϵ_{23}	ϵ_{34}	ϵ_{35}	ϵ_{36}	ϵ_{37}	ϵ_{38}	ϵ_{39}	N
n_4		ϵ_{41}	ϵ_{42}	ϵ_{33}	ϵ_{44}	ϵ_{45}	ϵ_{46}	ϵ_{47}	ϵ_{48}	ϵ_{49}	N
n_5	=	ϵ_{51}	ϵ_{52}	ϵ_{43}	ϵ_{54}	ϵ_{55}	ϵ_{56}	ϵ_{57}	ϵ_{58}	ϵ_{59}	N
n_6		ϵ_{61}	ϵ_{62}	ϵ_{53}	ϵ_{64}	ϵ_{65}	ϵ_{66}	ϵ_{67}	ϵ_{68}	ϵ_{69}	N
n_7		ϵ_{71}	ϵ_{72}	ϵ_{63}	ϵ_{74}	ϵ_{75}	ϵ_{76}	ϵ_{77}	ϵ_{78}	ϵ_{79}	N
n_8		ϵ_{81}	ϵ_{82}	ϵ_{73}	ϵ_{84}	ϵ_{85}	ϵ_{86}	ϵ_{87}	ϵ_{88}	ϵ_{89}	N
$\left(\begin{array}{c} n_9 \end{array} \right)$		$\left(\epsilon_{91} \right)$	ϵ_{92}	ϵ_{83}	ϵ_{94}	ϵ_{95}	ϵ_{96}	ϵ_{97}	ϵ_{98}	ϵ_{99} /	$\setminus N$

Neglect e and uds decays. Bear in mind: constraint

$$\sum_{i} N_i = N^{tag} \text{ or } \sum_{i} B_i = 1$$

$$B_i = rac{N_i}{N}$$

Statistical limit

- ▶99% efficiency,
- ➡no cross talk,
- no other backgrounds
- eeH and qqH as good as mumuH

	0.99	0	0	0	0	0	0	0	0 \
	0	0.99	0	0	0	0	0	0	0
	0	0	0.99	0	0	0	0	0	0
	0	0	0	0.99	0	0	0	0	0
E =	0	0	0	0	0.99	0	0	0	0
	0	0	0	0	0	0.99	0	0	0
	0	0	0	0	0	0	0.99	0	0
	0	0	0	0	0	0	0	0.99	0
	0	0	0	0	0	0	0	0	0.99

 $N = L imes (\sigma_{\mu\mu H} + \sigma_{eeH} + \sigma_{qqH}) = 5600 imes (6.77 + 7.04 + 136.81) = 843,372$

Ideal case: eeH, qqh as good as uuH No background, no cross talk, multinomial uncertainties, and constraint

$$\sigma_{n_i} = \sqrt{Np(1-p)\epsilon_{ii}}$$

		MLT		POS
Bcc	2.713%	0.650% (0.655%	0.664%)
Bbb	57.799%	0.086%	0.094%	0.144%)
Bmm	0.023%	7.190% 🔇	7.197%	7.198%)
Btt	6.319%	0.413% (0.421%	0.435%)
Bgg	8.619%	0.347% (0.356%	0.373%)
Baa	0.227%	2.294% (2.296%	2.299%)
BaZ	0.150%	2.818% (2.820%	2.822%)
BZZ	2.647%	0.658%	0.664%	0.673%)
BWW	21.496%	0.198%	0.209%	0.236%

More realistic: eeH, qqh as good as uuH 100% background, no cross talk, multinomial uncertainties, and constraint

$$\sigma_{n_i} = \sqrt{Np(1-p)\epsilon_{ii}}$$

		MLT		POS
Bcc	2.713%	0.773% (0.779%	0.790%)
Bbb	57.799%	0.102% (0.111%	0.171%)
Bmm	0.023%	8.547%	8.559%	8.560%)
Btt	6.319%	0.492%(0.501%	0.518%)
Bgg	8.619%	0.413% (0.424%	0.443%)
Baa	0.227%	2.728% (2.731%	2.734%)
BaZ	0.150%	3.350% (3.353%	3.356%)
BZZ	2.647%	0.783% (0.789%	0.800%)
BWW	21.496%	0 235% (0.249%	0 281%)

Discussion

- qqH and eeH not good as uuH, but more statistics
- No full cross talk information in current analyses
- Degrading in real analysis and lots of compromises
- This approach can improve Higgs branching ratio measurement and set a statistical limit

Efficiency matrix

Efficiency matrix

- Not necessary to know the branching ratios of Higgs decays
- Quantifies the detector/software/analysis performance with a single parameter det E
- It could be useful for detector optimization

A single purpose optimization instead of that of a bunch of benchmarks

Physics performance can be parameterized as a function of several parameters, or global precision of a set of benchmark processes or equivalent determinant of efficiency matrix [E]

Difficult

Now problem successfully becomes how to Maximize |E|²

- N=2, the maximum |E| : area of a square
- N=3, the maximum |E| : volume of a cube
- N>3, ...
- : volume of a HyperCube

Detector name: HC HyperCube or HiggsCube

Summary and plan

- There should be at least one detector dedicated for Higgs study at CEPC
- Global analysis with extra constraint can improve precision of the Higgs decay branching ratios, but not significantly.
- Global analysis of e+e->u+u-H, H-> all 9 decay branching ratios as "benchmark" to optimize detector, software, and analysis, which has a unique parameter and is easy to quantify.
- Using fast simulation + global analysis + machine learning to maximize |E| is a new approach

• Including eeH and qqH could be better and difficult, but not impossible ...