LGAD sensor design status and further plan

Mei Zhao

2019.06.10

Sensor requirement

 LGAD: low gain avalanche diode Gain>10 or charge>2.5fC better 4fC Breakdown voltage>200V Irradiation hardness>6*10¹⁵ neq/cm²

Status of other Institutions
 HPK\FBK\CNM
 Gain-- ok
 Breakdown –ok
 Irradiation hardness is not ok only 3*10¹⁵ neq/cm²
 ?Other things

Status

Sensor fabrication: first and second versions:

Company: maximum injection energy is 130keV, and diffusion temperature is 1150°C, 6 inch line.

• Buy wafers---done

Wafer type: 4 inch and 6 inch, 50 μ m 15k Ω .cm/low resistivity wafer, 15k Ω .cm FZ wafer

• Sensor design---done

about spaces between each structure and process for each structure

• Layout design---done

the space and field plate, including single sensors and 2*2\5*5 arrays

- Company to fabrication ---ok
- Mask---doing
- Process--- this week begins
- Sensor got---1.5 months then we can test them

Status

Other institutions(that may also involved in this part)

- Beijing Normal University(BNU or NDL):
- 2x2 sensors (tested before irradiation , to be irradiated)
 - Based on Epi layer (33um, medium resistance $100\Omega^{\sim}300\Omega$)
 - Two type without guard ring (BV60, BV170), EPI layer resistance is difference.
 - Three type with guard ring has been fabricated.
 - will do proton irradiation in China and Japan, and X ray irradiation in IHEP
- 5x5 sensors (MPW submitted, to be tested with ASIC)
- Full size sensor (to be submit after testing 5x5 sensor)
- > Beijing Institution of Microelectronics(IME):
- 8 inch line
- Injection energy is about 600keV
- Diffusion temperature is 1300C

Towards HGTD TDR

• Sensor characteristic

Our sensor and results Irradiation hardness Guard ring optimisation

• Test

New HGTD TDR schedule

All results finalized by Nov-Dec 2019

- Sept 2019: restart TDR writing/editing (mini WS w/ all editors on 18-20 Sept)
- Early January 2020: HGTD/Lar internal circulation
- Early Feb: First ATLAS circulation
- Early March: Second ATLAS circulation
- End March: ATLAS approval and submission to LHCC

Main concerns during TDR March ATLAS circulation

"Sensors irradiated to $5.1 \times 10^{15} n_{eq}$ /cm² do not fulfil requirement of Q > 2.5 fC"

Sensor failure/reliability studies (T, humidity, rate...) and guard ring optimisation: more results by fall

Issues

• Time is urgent!

The first sensors should be finished asap and improve them

• Irradiation hardness is important!

How?

(surface damage and bulk damage)

By deeper B implantation?

Or C spray?

Further plan

- Finish the first and second versions and test
- Test the BNU sensors and more?
- Test about the failure or reliability? of HPK /CNM sensors

- Sensors fabricated by using higher injection energy(IME)
- Guard ring modify(simulation and fabrication)

• Thanks!

BACKUPS

2x2 ch sensor (LGAD)+Asic (Altiroc0) performance (n_{irr})

Minimum required charge for Altiroc = 2.5fC, but > 4 fC for adequate jitter time resol.

BACKUPS

Additional tests/results to be included in the TDR

approved on the ATLAS EB 10th May 2019

https://indico.cern.ch/event/740402/contributions/3419073/attachments/1840869/3018169/go

(on SLIDES 9 -14)

In Green : tests/results for the TDR In Orange: Potential additional tests/results for TDR

Sensors

Irradiation program

 Neutron (JSI): continue irradiation of HPK-3.2 and FBK-C up to largest expected fluence 6x10¹⁵ n_{eq}/cm² → Measurement of sensors (Q vs V) on-going and available by summer
 TID (Xray, CYRIC): Xray at IHEP started : results by summer at ~3 MGy Done also with proton at CYRIC (already accumulated 4 MGy)
 Proton: starting soon at IHEP ; CYRIC in July 19 → result by end of year (results from CERN-PS already available) New campaign at Los Alamos at fall Investigating others facilities (PSI, Fermilab) tbc, possibly later this year

Sensor power optimisation and thermal runaway analysis : Ongoing , results by Sept/Oct

Sensor failure/reliability studies (T, humidity, rate...) and guard ring optimisation: more results by fall

BCAKUPS

LGAD (Low Gain Avalanche Detector) Structure Simulation, Design, Fabrication

- TCAD model building, performance simulation, process simulation
- Fabrication: draw layout mask, purchase high resistance wafer, modify process parameters, tape out IHEP 1st
 LGAD

BACKUPS

Chip design and process design:

1 Process simulation 2 Structure simulation

Gian layer doping concentration vs breakdown voltage and Gain 3e16cm⁻³, Vbd>400V, Gain>10

Gap size between JTE and guard ring vs breakdown voltage

BACKUPS• Layout, real process and parameters

\rightarrow wafer clean

\rightarrow JTE Implantation

Deposit oxide layer, photolithographically etching the oxide layer, (mask 4/0) Phosphorus ion injection, remove oxide layer, and thermally diffuse \rightarrow P-stop Implantation

Deposit an oxide layer, photolithographically etching the oxide layer, (mask 5/0) Boron ion injection, remove oxide layer, and thermally diffuse

 \rightarrow P layer Implantation

Deposit oxide layer, photolithographically etching the oxide layer, (mask 38/0) Boron ion implantation, thermal diffusion, and remove oxide layer \rightarrow n++ Implantation

Deposit oxide layer, photolithographically etching the oxide layer (mask 41/0)

Phosphorus ion implantation, remove oxide layer, and thermally diffuse

 \rightarrow Deposit oxide layer

1.3 µm thickness, photolithographic etch oxide layer (mask 44/0)

→Deposit metal layer

Photolithography etching metal layer (mask 45/0)

 \rightarrow lithography etches out the window area (mask 25/0)

 \rightarrow p++ Implantation

Boron ion implantation from backside

Process

1. Implant Phosphorus with N-JTE and WN-ring mask (dose=4e13<cm-2> energy=100<keV> diffuse temperature=1200<C> time=10.0<min>)

2. Implant Boron with P-stop and DC-stop mask (dose=2e14<cm-2> energy=40<keV> diffuse temperature=1200<C> time=10.0<min>)

3. Implant Boron with P+ layer mask (dose=????

cm-2> energy=100→130<keV> diffuse temperature=1200→1150<C> time=60.0<min>)

4. Implant Phosphorus N++ layer with mask (dose=1e15<cm-2> energy=40<keV> no diffusion)

5. Implant Boron from back without mask (dose=1e15<cm-2> energy=40<keV> diffuse temperature=1050<C> time=10.0<s>)

BACKUPS:NDL sensor

- LGAD sensor with Epitaxial layer
 - NDL is foundry for SipM. They can provide LGAD as well.
 - First batch LGAD sensor fabricated. (~100 2x2 sensors)
 - Thickness of epitaxial layer: 33um
 - epitaxial layer Resistivity: 10kOhm.cm

http://www.ndl-sipm.net/contacteng.html

Two type of sensors BV170-30-B, BV60-50-B

Next version of NDL LGAD

- 2nd version of NDL LGAD will use 5x5 HPK layout
 - MPW, will submit in May 2019
- Two doping profile (BV60, and doping like HPK 3.2)
- Area: 6.5 mm × 6.5 mm
- Epi layer thickness: 33µm, 3000hm.cm
- layout:5×5 LGAD
- gain:10-30
- capacitance: <4 pF
- Time resolution <50 ps
- Leakage current: <1nA
- Diameter for bump bonding pad: 90 μm,pitch:1.3mm
- Two different doping
 - One with BV60-50-B design;
 - Another with deep P+ implantation (~2um)

Doping profile for NDL sensor

(UCSC measurement)

IHEP measurement

Timing performance

Laser test

Beta test (UCSC measurement)

