Short update on the topic around the EFT model

Ryuta Kiuchi

09/05/2019

Recall of the EFT model

Resolving the tensor structure of the Higgs coupling to Z-bosons via Higgs-strahlung

Shankha Banerjee, Rick S. Gupta, Joey Y. Reiness and Michael Spannowsky ${ }^{1}$
${ }^{1}$ Institute for Particle Physics Phenomenology, Durham University, South Road, Durham, DH1 3LE (Dated: May 9, 2019)

We propose differential observables for $p p \rightarrow Z\left(\ell^{+} \ell^{-}\right) h(b b)$ that can be used to completely determine the tensor structure of the $h Z Z^{*} / h Z \bar{f} f$ couplings relevant to this process in the dimension-6 SMEFT. In particular, we propose a strategy to probe the anomalous $h Z_{\mu \nu} Z^{\mu \nu}$ and $h Z_{\mu \nu} \tilde{Z}^{\mu \nu}$ vertices at the percent level. We show that this can achieved by resurrecting the interference term between the transverse $Z h$ amplitude, which receives contributions from the above couplings, and the dominant SM longitudinal amplitude. These contributions are hard to isolate without a knowledge of the analytical amplitude, as they vanish unless the process is studied differentially in three different angular variables at the level of the Z-decay products. By also including the differential distributions with respect to energy variables, we obtain projected bounds for the two other tensor structures of the Higgs coupling to Z-bosons.

I read it as ...

(1) Anomalous HZZ couplings

$$
\begin{gather*}
\Delta \mathcal{L}_{6}^{h Z \bar{f} f} \supset \delta \delta_{Z Z}^{h} \frac{2 m_{Z}^{2}}{v} h \frac{Z^{\mu} Z_{\mu}}{2}+\sum_{f} g_{Z f}^{h} \frac{h}{v} Z_{\mu} \bar{f} \gamma^{\mu} f \\
+\kappa_{Z Z} \frac{h}{2 v} Z^{\mu \nu} Z_{\mu \nu}+\tilde{\kappa}_{Z Z} \frac{h}{2 v} Z^{\mu \nu} \tilde{Z}_{\mu \nu} . \tag{1}
\end{gather*}
$$

(2) Helicity amplitude

$$
\mathrm{ff}->\mathrm{ZH}
$$

(here, $\mathrm{Z}->$ II is not assumed yet)

$$
\begin{aligned}
& \mathcal{M}_{\sigma}^{\lambda= \pm}=\sigma \frac{1+\sigma \lambda \cos \Theta}{\sqrt{2}} \frac{g g_{f}^{Z}}{c_{\theta_{W}}} \frac{m_{Z}}{\sqrt{\hat{s}}}\left[1+\left(\frac{g_{Z f}^{h}}{g_{f}^{Z}}+\kappa_{Z Z}-i \lambda \tilde{\kappa}_{Z Z}\right) \frac{\hat{s}}{2 m_{Z}^{2}}\right] \\
& \mathcal{M}_{\sigma}^{\lambda=0}=-\sin \Theta \frac{g g_{f}^{Z}}{2 c_{\theta_{W}}}\left[1+\delta \hat{g}_{Z Z}^{h}+2 \kappa_{Z Z}+\frac{g_{Z f}^{h}}{g_{f}^{Z}}\left(-\frac{1}{2}+\frac{\hat{s}}{2 m_{Z}^{2}}\right)\right],
\end{aligned}
$$

(3) Taking into account Z->II

$$
\sum_{L, R}|\mathcal{A}(\hat{s}, \Theta, \theta, \phi)|^{2}=a_{L L} \sin ^{2} \Theta \sin ^{2} \theta+a_{T T}^{1} \cos \Theta \cos \theta
$$

$$
+a_{T T}^{2}\left(1+\cos ^{2} \Theta\right)\left(1+\cos ^{2} \theta\right)+\cos \varphi \sin \Theta \sin \theta
$$

$$
\times\left(a_{L T}^{1}+a_{L T}^{2} \cos \theta \cos \Theta\right)+\sin \varphi \sin \Theta \sin \theta
$$

$$
\times\left(\tilde{a}_{L T}^{1}+\tilde{a}_{L T}^{2} \cos \theta \cos \Theta\right)+a_{T T^{\prime}} \cos 2 \varphi \sin ^{2} \Theta \sin ^{2} \theta
$$

$$
\begin{equation*}
+\tilde{a}_{T T^{\prime}} \sin 2 \varphi \sin ^{2} \Theta \sin ^{2} \theta \tag{7}
\end{equation*}
$$

each coefficient is given in Table II.

Definition of angles

A trial to follow the squared amplitude

Decay plane Angle

Verification of the Lorentz structures

- "az": $\quad Z H \rightarrow l^{+} l-H, \sqrt{ }=250 G e V$

$\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H$

$$
+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \tilde{\hat{Z}}^{\mu \nu} H
$$

$\cos \theta z:$ $\cos \theta f^{*}$. $\Delta \Phi$

ne
In the Laboratory frame
a slide from ILC
(T. Ogawa et.al. 2017)

Issue

-- the total value (integrated with $\theta[0, \pi], \phi[0,2 \pi]$) becomes ~ 50 nbarn, with several input values, such as width of Z boson ...

I expected that it should be $\sim 6.7 \mathrm{fb}($ ee $->\mathrm{ZH}->Z(->\mu \mu) \mathrm{H})$,
I need to check the input values, but possible that there is another factors not written --> right now, I normalized it.

$a_{L L}$	$\frac{\mathcal{G}^{2}}{4}\left[1+2 \delta g_{Z Z}^{h}+4 \kappa_{Z Z}+\frac{g_{Z f}^{h}}{g_{f}^{Z}}\left(-1+4 \gamma^{2}\right)\right]$
$a_{T T}^{1}$	$\frac{\mathcal{G}^{2} \sigma \epsilon_{L R}}{2 \gamma^{2}}\left[1+4\left(\frac{g_{Z f}^{h}}{g_{f}^{Z}}+\kappa_{Z Z}\right) \gamma^{2}\right]$
$a_{T T}^{2}$	$\frac{\mathcal{G}^{2}}{8 \gamma^{2}}\left[1+4\left(\frac{g_{Z f}^{h}}{g_{f}^{Z}}+\kappa_{Z Z}\right) \gamma^{2}\right]$
$a_{L T}^{1}$	$-\frac{\mathcal{G}^{2} \sigma \epsilon_{L R}}{2 \gamma}\left[1+2\left(\frac{2 g_{Z f}^{h}}{g_{f}^{Z}}+\kappa_{Z Z}\right) \gamma^{2}\right]$
$a_{L T}^{2}$	$-\frac{\mathcal{G}^{2}}{2 \gamma}\left[1+2\left(\frac{2 g_{Z f}^{h}}{g_{f}^{Z}}+\kappa_{Z Z}\right) \gamma^{2}\right]$
$\tilde{a}_{L T}^{1}$	$-\mathcal{G}^{2} \sigma \epsilon_{L R} \tilde{\kappa}_{Z Z} \gamma$
$\tilde{a}_{L T}^{2}$	$-\mathcal{G}^{2} \tilde{\kappa}_{Z Z} \gamma$
$a_{T T^{\prime}}$	$\frac{\mathcal{G}^{2}}{8 \gamma^{2}}\left[1+4\left(\frac{g_{Z f}^{h}}{g_{f}^{Z}}+\kappa_{Z Z}\right) \gamma^{2}\right]$
$\tilde{a}_{T T^{\prime}}$	$\frac{\mathcal{G}^{2} \tilde{\kappa}_{Z Z}}{2}$

$$
\begin{align*}
& \sum_{L, R}|\mathcal{A}(\hat{s}, \Theta, \theta, \phi)|^{2}=a_{L L} \sin ^{2} \Theta \sin ^{2} \theta+a_{T T}^{1} \cos \Theta \cos \theta \\
& +a_{T T}^{2}\left(1+\cos ^{2} \Theta\right)\left(1+\cos ^{2} \theta\right)+\cos \varphi \sin \Theta \sin \theta \\
& \times\left(a_{L T}^{1}+a_{L T}^{2} \cos \theta \cos \Theta\right)+\sin \varphi \sin \Theta \sin \theta \\
& \times\left(\tilde{a}_{L T}^{1}+\tilde{a}_{L T}^{2} \cos \theta \cos \Theta\right)+a_{T T^{\prime}} \cos 2 \varphi \sin ^{2} \Theta \sin ^{2} \theta \\
& +\tilde{a}_{T T^{\prime}} \sin 2 \varphi \sin ^{2} \Theta \sin ^{2} \theta \tag{7}
\end{align*}
$$

Issue

-- Usually, those estimation is done using a generator to which the anomolus couplings are implemented as well
-- Here, I just rely on the derived equation, which only show the first-order and of course, no detector/generator effect is included. Therefore, it might be too course estimation.

Next steps

-- Check again the equation, since I just started this.
-- Try to use $Z->m m$ though $Z(->\mu \mu) H(->Z Z)$ sample and try to overplot on theoretical line. Maybe I need to scale the SM model.
-- Consider to use H->ZZ side. Definitely statistics would be a matter. Different $\sqrt{ } \mathrm{s}$ is a small advantage.
-- Contact authors about the equation etc.

