
Weekly Updates

Ryuta

Status

• Gitlab repository for the paper draft

https://gitlab.com/x-team/paper/p5_cepc_higgs_zz

will update section by section

- Discussion with Jiayin about the EFT (p5 in this slide)
- Discussion with Manqi

-- analysis of electron channel to be included

will try to see the Z(->ee)H(ZZ->vvjj) first

A material for discussions

-- Has been composed at December 3rd (Tuesday) --

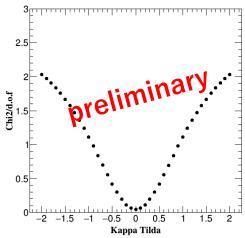
Discussion/consideration around the EFT topic

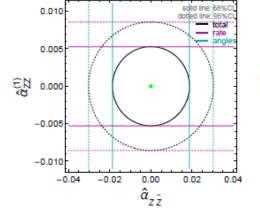
EFT: Comments received from Jiayin (at Dec.2nd 2019)

1) For the current our status, one of possible statements might be the difference of the kinematics :

"production channel": ee->Z*->ZH->Z(->II)H(->bb), $\sqrt{s} = 240 (Z^*)$ ee->Z*->ZH->ZH(->ZZ*), \sqrt{s} is lower than 240 GeV, for H->ZZ*.

2) There would be rooms to study further on the production channel, for example. Even with the same process written in the paper, $ee ->Z^*->ZH->Z(->II)H(->bb)$, if nobody touches it yet for the CEPC. From the statistical point of view, Z(->qq)H(->bb), is also attractive, but the final S/N should be considered/studied.


3) He also has concerns on the same study at HWW, which has higher Br. than HZZ


My personal consideration

- 1) Now, the same channel as the HZZ analysis has been chosen, expecting the better S/B, though the Background(=B) is not included yet.
 - -- total number of signal events ~ 100 (or less)
- -- if we deduce the first order from the right figure, it is, with my eye, $-0.8<\widetilde{\kappa}<0.8$ where this range is decided by Chi2/N_{dof}<1
- 2) from the studies, using the production channel, it is as follows:
 - -- total number of signal events ~ several * 10000
 - -- depending on the parameters, the order is such as -0.03(5) < param. < 0.03(5)

It just shows that the limitation range reflects the statistical uncertainty.

the same order in the CEPC white paper

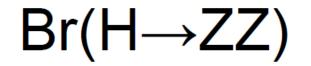
from arXiv 1512.06877 (Liantao/Jiyayin point me) but it₆shows

Topic around the yield precision (=HZZ analysis)

Our current numbers

1) Our numbers (given from Kaili) is

ZZZ*	
μμννqq	17.8 %
μμqqνν	71.5 %
ννμμqq+qqμμ	15.4 %
qqννμμ	66.5 %
qqμμνν	54.3 %
All combined	9.44 %


 $\frac{1}{\sqrt{\frac{1}{7.2^2} + \frac{1}{7.9^2}}} = 5.32$

2) in the white paper

Table	8.	Expected	relative	precision	for	\mathbf{the}
$\sigma(Z)$	$H) \times$	$\operatorname{BR}(H \rightarrow$	ZZ^*) me	easurement	with	an
integ	grate	ed luminosit	y 5.6ab ⁻	¹ .		

	ZI	Precision	
-	$Z {\rightarrow} \mu^+ \mu^-$	$H {\rightarrow} Z Z^* {\rightarrow} \nu \bar{\nu} q \bar{q}$	7.2%
	$Z \mathop{\rightarrow} \nu \bar{\nu}$	$H \mathop{\rightarrow} Z Z^* \mathop{\rightarrow} \ell^+ \ell^- q \bar{q}$	7.9%
-	С	ombination	4.9%

decays. For the analysis discussed in Section 5.1, these contaminations are estimated from SM. In the combination fit, they are constrained by the $H \to WW^*$ and $H \to ZZ^*$ analyses described in Sections 5.2 and 5.3, respectively. Taking into account these across-channel contaminations properly generally leads to small improvements in precision. For example, the precision on $\sigma(ZH) \times BR(H \to ZZ^*)$ is improved from 5.3% of the standalone analysis to 4.9% after the combination.

Note that : CEPC_v1, 5 ab⁻¹, different MC samples/software

ZZZ*	Yield	Object reconstructed	Signal Efficiency(%)	Main Background	Accuracy (%)	Comments
μμννqq	128	118	63.3	h->ww&zz_sl	12.9	Tau finder would be
μμqqvv	128	125	-	h->bb&zz_sl	>25	highly appreciated
eevvqq	132	91	53.8	h->ww&sze_sl	15.8]
eeqqvv	132	88	-	h->bb&zz_sl	>25	Reconstructed
vvµµqq	158	144	61.4	h->t,w&zz_sl	11.0	efficiency of electron need to be improved
vvqqµµ	158	149	51.9	h->w,b&zz_sl	12.9	need to be improved
vveeqq	151	118	43.1	h->w&sze_sl	21.3]
vvqqee	151	134	-	h->bb&sze_sl	>25	1
qqµµvv	135	115	-	h->tt&zz_sl	>25	Compare to ll recoil,
qqvvμμ	135	122	-	h->t,w&zz_sl	>25	qq recoil mass has much worse
qqeevv	127	107	-	h->tt&sze_sl	>25	distinguishing power
qqvvee	127	123	-	h->t,w&sze_sl	>25	to SM background
<u> արիի/մժիր</u>	43	39	69.8	h->tt&zz_sl	19.9	Tau finder & Electron
µµeeqq/qqee	43	39	60.5	h->tt&zz_sl	21.2	Reconstruction
eeeeqq/eeqqee	43	33	-	h->tt&sze_sl	>25	1
eeµµqq/eeqqµµ	43	41	58.2	h->tt&sze_sl	19.9]

Full Simulation analysis performed on 16 independent channels.

8 Channels acquire accuracy better than 25%.

Combined accuracy: **5.4%**

If electron id efficiency ~ muon id: **4.8%**

If tau finder (used for veto) is mature: ??

TLEP extrapolation: 4.3%

10/11/2016

From the slide by Manqi "Higgs Physics at the CEPC"

Comparison of different combinations

3) Refer the numbers from previous page

ZZZ*	
μμννqq	12.9 %
eevvqq	15.8 %
ννμμαα	11.0 %
ννqqμμ	12.9 %
vveeqq	21.3 %
μμμμαα+ααμμ	19.9 %
µµeeqq+qqee	21.2 %
eeµµqq+qqµµ	19.9 %
All combined	5.44 %

All 8 channels (blue colored)

ZZZ*	
μμννqq	12.9 %
eevvqq	15.8 %
ννμμαα	11.0 %
ννqqμμ	12.9 %
vveeqq	21.3 %
All combined	6.14 %

First 5 channels (blue colored)

We are close to this combination

ZZZ*	
μμννqq	12.9 %
ννμμαα	11.0 %
ννqqμμ	12.9 %
All combined	7.02 %

3 channels except the "ee" channels (blue colored)

this calculation does not include the "combination fitting" ## again, the each number can not directly compared with ours.

Another reference

Channels Table

All channels scaled to 5ab⁻¹

Signal		Dresision	Signal		Drasisian	Signal		Precision
Z	Н	Precision	Z	Н	Precision	Z	Z H	
	H->qq			H->WW		H->ZZ		
	bb	1.6%		lvlv	9.2%	vv	μμqq	8.2%
ee	сс	23.6%	ee	evqq	4.6%	vv	eeqq	35.2%
	gg	13.3%		μνqq	3.9%	μμ	vvqq	7.3%
	bb	1.1%		lvlv	7.3%	ee	eeqq	35.1%
μμ	сс	14.8%	μμ	evqq	4.0%	ee	μμqq	23.0%
	gg	8.0%		μνqq	4.0%	ZH bkg co	ntribution	19.4%
	bb	0.5%	qqqq		2.0%	VV	H(WW fusio	on)
qq	сс	11.9%		evqq	4.7%	vv	bb	3.1%
	gg	3.9%	VV	μνqq	4.2%		Н→µµ	
	bb	0.4%		lvlv	11.3%	qq		
vv	сс	3.9%	qq	lvqq	2.2%(ILC)	ee]	15.9%
	gg	1.5%	ZH bkg co	ntribution	3.0%	μμ	μμ	15.9%
	Η→ττ			Η→γγ, Ζγ		vv		
ee		2.8%	μμ+ττ		41.0%	H->Invisible Br, Upp		Br, Upper
μμ		2.8%	VV	γγ	13.7%	qq		0.8%
qq	ττ	1.0%	qq		10.3%	ee	ZZ(vvvv)	0.6%
VV		3.1%	VV	Zγ(qqγ)	21.2%	μμ		0.6%
				Kaili Zhan	~			

From the slide by Kaili "CEPC Higgs Combination" 2018.05.25 at Rome

> vveeqq : 35.2 % <--> previous page shows 21.3 %

Therefore, it is not surely guaranteed that "ee" channel can improve the final precision as we expected

18/5/25

Comments

- 1) Can we check a bit again on $vv\mu\mu qq+qq\mu\mu$ channel
 - -- it might be good to have histograms with cuts at each stage.
 - -- one of my concern is the signal efficiency would be a little small.
- 2) Is it possible to have a quick look of the "eevvqq" channel?

About the contents of the draft

Case 1: Focusing fully on the HZZ analysis, including "ee" channels without EFT topic.

==> it might not happen but ,,, in case, try to compose another paper for EFT study from the production channel, together with , such as 4/6jet HZZ analysis, since we need to utilize/face the multi-jet status for that EFT study.

Case 2: Focusing on the HZZ analysis, including "ee" channels (or not) with EFT topic from the HZZ channel and/or add production channel if we can (probably, the time might not be enough ...)

How about the "kappa framework" ?

I have quickly read the references, but not quite sure yet, how we can include it in our draft. Of course, the precision of HZZ would be an input for that framework, but not sure how much effect it has, since the σ (ZH) gives much better accuracy on κ_7